1,506 research outputs found

    An Empirical Study on Android-related Vulnerabilities

    Full text link
    Mobile devices are used more and more in everyday life. They are our cameras, wallets, and keys. Basically, they embed most of our private information in our pocket. For this and other reasons, mobile devices, and in particular the software that runs on them, are considered first-class citizens in the software-vulnerabilities landscape. Several studies investigated the software-vulnerabilities phenomenon in the context of mobile apps and, more in general, mobile devices. Most of these studies focused on vulnerabilities that could affect mobile apps, while just few investigated vulnerabilities affecting the underlying platform on which mobile apps run: the Operating System (OS). Also, these studies have been run on a very limited set of vulnerabilities. In this paper we present the largest study at date investigating Android-related vulnerabilities, with a specific focus on the ones affecting the Android OS. In particular, we (i) define a detailed taxonomy of the types of Android-related vulnerability; (ii) investigate the layers and subsystems from the Android OS affected by vulnerabilities; and (iii) study the survivability of vulnerabilities (i.e., the number of days between the vulnerability introduction and its fixing). Our findings could help OS and apps developers in focusing their verification & validation activities, and researchers in building vulnerability detection tools tailored for the mobile world

    Android source code vulnerability detection: a systematic literature review

    Get PDF
    The use of mobile devices is rising daily in this technological era. A continuous and increasing number of mobile applications are constantly offered on mobile marketplaces to fulfil the needs of smartphone users. Many Android applications do not address the security aspects appropriately. This is often due to a lack of automated mechanisms to identify, test, and fix source code vulnerabilities at the early stages of design and development. Therefore, the need to fix such issues at the initial stages rather than providing updates and patches to the published applications is widely recognized. Researchers have proposed several methods to improve the security of applications by detecting source code vulnerabilities and malicious codes. This Systematic Literature Review (SLR) focuses on Android application analysis and source code vulnerability detection methods and tools by critically evaluating 118 carefully selected technical studies published between 2016 and 2022. It highlights the advantages, disadvantages, applicability of the proposed techniques and potential improvements of those studies. Both Machine Learning (ML) based methods and conventional methods related to vulnerability detection are discussed while focusing more on ML-based methods since many recent studies conducted experiments with ML. Therefore, this paper aims to enable researchers to acquire in-depth knowledge in secure mobile application development while minimizing the vulnerabilities by applying ML methods. Furthermore, researchers can use the discussions and findings of this SLR to identify potential future research and development directions

    Program Analysis Based Approaches to Ensure Security and Safety of Emerging Software Platforms

    Full text link
    Our smartphones, homes, hospitals, and automobiles are being enhanced with software that provide an unprecedentedly rich set of functionalities, which has created an enormous market for the development of software that run on almost every personal computing devices in a person's daily life, including security- and safety-critical ones. However, the software development support provided by the emerging platforms also raises security risks by allowing untrusted third-party code, which can potentially be buggy, vulnerable or even malicious to control user's device. Moreover, as the Internet-of-Things (IoT) technology is gaining vast adoptions by a wide range of industries, and is penetrating every aspects of people's life, safety risks brought by the open software development support of the emerging IoT platform (e.g., smart home) could bring more severe threat to the well-being of customers than what security vulnerabilities in mobile apps have done to a cell phone user. To address this challenge posed on the software security in emerging domains, my dissertation focuses on the flaws, vulnerabilities and malice in the software developed for platforms in these domains. Specifically, we demonstrate that systematic program analyses of software (1) Lead to an understanding of design and implementation flaws across different platforms that can be leveraged in miscellaneous attacks or causing safety problems; (2) Lead to the development of security mechanisms that limit the potential for these threats.We contribute static and dynamic program analysis techniques for three modern platforms in emerging domains -- smartphone, smart home, and autonomous vehicle. Our app analysis reveals various different vulnerabilities and design flaws on these platforms, and we propose (1) static analysis tool OPAnalyzer to automates the discovery of problems by searching for vulnerable code patterns; (2) dynamic testing tool AutoFuzzer to efficiently produce and capture domain specific issues that are previously undefined; and (3) propose new access control mechanism ContexIoT to strengthen the platform's immunity to the vulnerability and malice in third-party software. Concretely, we first study a vulnerability family caused by the open ports on mobile devices, which allows remote exploitation due to insufficient protection. We devise a tool called OPAnalyzer to perform the first systematic study of open port usage and their security implications on mobile platform, which effectively identify and characterize vulnerable open port usage at scale in popular Android apps. We further identify the lack of context-based access control as a main enabler for such attacks, and begin to seek for defense solution to strengthen the system security. We study the popular smart home platform, and find the existing access control mechanisms to be coarse-grand, insufficient, and undemanding. Taking lessons from previous permission systems, we propose the ContexIoT approach, a context-based permission system for IoT platform that supports third-party app development, which protects the user from vulnerability and malice in these apps through fine-grained identification of context. Finally, we design dynamic fuzzing tool, AutoFuzzer for the testing of self-driving functionalities, which demand very high code quality using improved testing practice combining the state-of-the-art fuzzing techniques with vehicular domain knowledge, and discover problems that lead to crashes in safety-critical software on emerging autonomous vehicle platform.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145845/1/jackjia_1.pd
    • …
    corecore