395 research outputs found

    Realization of aperiodic subshifts and uniform densities in groups

    Get PDF
    A theorem of Gao, Jackson and Seward, originally conjectured to be false by Glasner and Uspenskij, asserts that every countable group admits a 22-coloring. A direct consequence of this result is that every countable group has a strongly aperiodic subshift on the alphabet {0,1}\{0,1\}. In this article, we use Lov\'asz local lemma to first give a new simple proof of said theorem, and second to prove the existence of a GG-effectively closed strongly aperiodic subshift for any finitely generated group GG. We also study the problem of constructing subshifts which generalize a property of Sturmian sequences to finitely generated groups. More precisely, a subshift over the alphabet {0,1}\{0,1\} has uniform density α[0,1]\alpha \in [0,1] if for every configuration the density of 11's in any increasing sequence of balls converges to α\alpha. We show a slightly more general result which implies that these subshifts always exist in the case of groups of subexponential growth.Comment: minor typos correcte

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Acyclic edge-coloring using entropy compression

    Full text link
    An edge-coloring of a graph G is acyclic if it is a proper edge-coloring of G and every cycle contains at least three colors. We prove that every graph with maximum degree Delta has an acyclic edge-coloring with at most 4 Delta - 4 colors, improving the previous bound of 9.62 (Delta - 1). Our bound results from the analysis of a very simple randomised procedure using the so-called entropy compression method. We show that the expected running time of the procedure is O(mn Delta^2 log Delta), where n and m are the number of vertices and edges of G. Such a randomised procedure running in expected polynomial time was only known to exist in the case where at least 16 Delta colors were available. Our aim here is to make a pedagogic tutorial on how to use these ideas to analyse a broad range of graph coloring problems. As an application, also show that every graph with maximum degree Delta has a star coloring with 2 sqrt(2) Delta^{3/2} + Delta colors.Comment: 13 pages, revised versio
    corecore