172 research outputs found

    Intrusion Detection in Industrial Networks via Data Streaming

    Get PDF
    Given the increasing threat surface of industrial networks due to distributed, Internet-of-Things (IoT) based system architectures, detecting intrusions in\ua0 Industrial IoT (IIoT) systems is all the more important, due to the safety implications of potential threats. The continuously generated data in such systems form both a challenge but also a possibility: data volumes/rates are high and require processing and communication capacity but they contain information useful for system operation and for detection of unwanted situations.In this chapter we explain that\ua0 stream processing (a.k.a. data streaming) is an emerging useful approach both for general applications and for intrusion detection in particular, especially since it can enable data analysis to be carried out in the continuum of edge-fog-cloud distributed architectures of industrial networks, thus reducing communication latency and gradually filtering and aggregating data volumes. We argue that usefulness stems also due to\ua0 facilitating provisioning of agile responses, i.e. due to potentially smaller latency for intrusion detection and hence also improved possibilities for intrusion mitigation. In the chapter we outline architectural features of IIoT networks, potential threats and examples of state-of-the art intrusion detection methodologies. Moreover, we give an overview of how leveraging distributed and parallel execution of streaming applications in industrial setups can influence the possibilities of protecting these systems. In these contexts, we give examples using electricity networks (a.k.a. Smart Grid systems).We conclude that future industrial networks, especially their Intrusion Detection Systems (IDSs), should take advantage of data streaming concept by decoupling semantics from the deployment

    Deep-IFS:Intrusion Detection Approach for Industrial Internet of Things Traffic in Fog Environment

    Get PDF
    The extensive propagation of industrial Internet of Things (IIoT) technologies has encouraged intruders to initiate a variety of attacks that need to be identified to maintain the security of end-user data and the safety of services offered by service providers. Deep learning (DL), especially recurrent approaches, has been applied successfully to the analysis of IIoT forensics but their key challenge of recurrent DL models is that they struggle with long traffic sequences and cannot be parallelized. Multihead attention (MHA) tried to address this shortfall but failed to capture the local representation of IIoT traffic sequences. In this article, we propose a forensics-based DL model (called Deep-IFS) to identify intrusions in IIoT traffic. The model learns local representations using local gated recurrent unit (LocalGRU), and introduces an MHA layer to capture and learn global representation (i.e., long-range dependencies). A residual connection between layers is designed to prevent information loss. Another challenge facing the current IIoT forensics frameworks is their limited scalability, limiting performance in handling Big IIoT traffic data produced by IIoT devices. This challenge is addressed by deploying and training the proposed Deep-IFS in a fog computing environment. The intrusion identification becomes scalable by distributing the computation and the IIoT traffic data across worker fog nodes for training the model. The master fog node is responsible for sharing training parameters and aggregating worker node output. The aggregated classification output is subsequently passed to the cloud platform for mitigating attacks. Empirical results on the Bot-IIoT dataset demonstrate that the developed distributed Deep-IFS can effectively handle Big IIoT traffic data compared with the present centralized DL-based forensics techniques. Further, the results validate the robustness of the proposed Deep-IFS across various evaluation measures

    Artificial Intelligence Deployment to Secure IoT in Industrial Environment

    Get PDF
    Performance enhancement and cost-effectiveness are the critical factors for most industries. There is a variation in the performance and cost matrices based on the industrial sectors; however, cybersecurity is required to be maintained since most of the 4th industrial revolution (4IR) are based on technology. Internet of Things, IoT, technology is one of the 4IR pillars that support enhancing performance and cost. Like most Internet-based technologies, IoT has some security challenges mostly related to access control and exposed services. Artificial intelligence (AI) is a promising approach that can enhance cybersecurity. This chapter explores industrial IoT (IIoT) from the business view and the security requirements. It also provides a critical analysis of the security challenges faced by IoT systems. Finally, it presents a comparative study of the advisable AI categories to be used in mitigating IoT security challenges

    Have you been a victim of COVID-19-related cyber incidents? Survey, taxonomy, and mitigation strategies

    Get PDF
    Cybercriminals are constantly on the lookout for new attack vectors, and the recent COVID-19 pandemic is no exception. For example, social distancing measures have resulted in travel bans, lockdowns, and stay-at-home orders, consequently increasing the reliance on information and communications technologies, such as Zoom. Cybercriminals have also attempted to exploit the pandemic to facilitate a broad range of malicious activities, such as attempting to take over videoconferencing platforms used in online meetings/educational activities, information theft, and other fraudulent activities. This study briefly reviews some of the malicious cyber activities associated with COVID-19 and the potential mitigation solutions. We also propose an attack taxonomy, which (optimistically) will help guide future risk management and mitigation responses. © 2013 IEEE

    Intrusion Detection Framework for Industrial Internet of Things Using Software Defined Network

    Get PDF
    The Industrial Internet of Things (IIoT) refers to the employment of the Internet of Things in industrial management, where a substantial number of machines and devices are linked and synchronized with the help of software programs and third platforms to improve the overall productivity. The acquisition of the industrial IoT provides benefits that range from automation and optimization to eliminating manual processes and improving overall efficiencies, but security remains to be forethought. The absence of reliable security mechanisms and the magnitude of security features are significant obstacles to enhancing IIoT security. Over the last few years, alarming attacks have been witnessed utilizing the vulnerabilities of the IIoT network devices. Moreover, the attackers can also sink deep into the network by using the relationships amidst the vulnerabilities. Such network security threats cause industries and businesses to suffer financial losses, reputational damage, and theft of important information. This paper proposes an SDN-based framework using machine learning techniques for intrusion detection in an industrial IoT environment. SDN is an approach that enables the network to be centrally and intelligently controlled through software applications. In our framework, the SDN controller employs a machine-learning algorithm to monitor the behavior of industrial IoT devices and networks by analyzing traffic flow data and ultimately determining the flow rules for SDN switches. We use SVM and Decision Tree classification models to analyze our framework’s network intrusion and attack detection performance. The results indicate that the proposed framework can detect attacks in industrial IoT networks and devices with an accuracy of 99.7%

    Deep Learning Based Anomaly Detection for Fog-Assisted IoVs Network

    Get PDF
    Internet of vehicles (IoVs) allows millions of vehicles to be connected and share information for various purposes. The main applications of IoVs are traffic management, emergency messages delivery, E-health, traffic, and temperature monitoring. On the other hand, IoVs lack in location awareness and geographic distribution, which is critical for some IoVs applications such as smart traffic lights and information sharing in vehicles. To support these topographies, fog computing was proposed as an appealing and novel term, which was integrated with IoVs to extend storage, computation, and networking. Unfortunately, it is also challenged with various security and privacy hazards, which is a serious concern of smart cities. Therefore, we can formulate that Fog-assisted IoVs (Fa-IoVs), are challenged by security threats during information dissemination among mobile nodes. These security threats of Fa-IoVs are considered as anomalies which is a serious concern that needs to be addressed for smooth Fa-IoVs network communication. Here, smooth communication refers to less risk of important data loss, delay, communication overhead, etc. This research work aims to identify research gaps in the Fa-IoVs network and present a deep learning-based dynamic scheme named CAaDet (Convolutional autoencoder Aided anomaly detection) to detect anomalies. CAaDet exploits convolutional layers with a customized autoencoder for useful feature extraction and anomaly detection. Performance evaluation of the proposed scheme is done by using the F1-score metric where experiments are carried out by exploiting a benchmark dataset named NSL-KDD. CAaDet also observes the behavior of fog nodes and hidden neurons and selects the best match to reduce false alarms and improve F1-score. The proposed scheme achieved significant improvement over existing schemes for anomaly detection. Identified research gaps in Fa-IoVs can give future directions to researchers and attract more attention to this new era

    Improving efficiency and security of IIoT communications using in-network validation of server certificate

    Get PDF
    The use of advanced communications and smart mechanisms in industry is growing rapidly, making cybersecurity a critical aspect. Currently, most industrial communication protocols rely on the Transport Layer Security (TLS) protocol to build their secure version, providing confidentiality, integrity and authentication. In the case of UDP-based communications, frequently used in Industrial Internet of Things (IIoT) scenarios, the counterpart of TLS is Datagram Transport Layer Security (DTLS), which includes some mechanisms to deal with the high unreliability of the transport layer. However, the (D)TLS handshake is a heavy process, specially for resource-deprived IIoT devices and frequently, security is sacrificed in favour of performance. More specifically, the validation of digital certificates is an expensive process from the time and resource consumption point of view. For this reason, digital certificates are not always properly validated by IIoT devices, including the verification of their revocation status; and when it is done, it introduces an important delay in the communications. In this context, this paper presents the design and implementation of an in-network server certificate validation system that offloads this task from the constrained IIoT devices to a resource-richer network element, leveraging data plane programming (DPP). This approach enhances security as it guarantees that a comprehensive server certificate verification is always performed. Additionally, it increases performance as resource-expensive tasks are moved from IIoT devices to a resource-richer network element. Results show that the proposed solution reduces DTLS handshake times by 50–60 %. Furthermore, CPU use in IIoT devices is also reduced, resulting in an energy saving of about 40 % in such devices.This work was financially supported by the Spanish Ministry of Science and Innovation through the TRUE-5G project PID2019-108713RB-C54/AEI/10.13039/501100011033. It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and by the Basque Country Government under the ELKARTEK Program, project REMEDY - Real tiME control and embeddeD securitY (KK-2021/00091)

    Requirements and Recommendations for IoT/IIoT Models to automate Security Assurance through Threat Modelling, Security Analysis and Penetration Testing

    Full text link
    The factories of the future require efficient interconnection of their physical machines into the cyber space to cope with the emerging need of an increased uptime of machines, higher performance rates, an improved level of productivity and a collective collaboration along the supply chain. With the rapid growth of the Internet of Things (IoT), and its application in industrial areas, the so called Industrial Internet of Things (IIoT)/Industry 4.0 emerged. However, further to the rapid growth of IoT/IIoT systems, cyber attacks are an emerging threat and simple manual security testing can often not cope with the scale of large IoT/IIoT networks. In this paper, we suggest to extract metadata from commonly used diagrams and models in a typical software development process, to automate the process of threat modelling, security analysis and penetration testing, without detailed prior security knowledge. In that context, we present requirements and recommendations for metadata in IoT/IIoT models that are needed as necessary input parameters of security assurance tools.Comment: 8 pages, Proceedings of the 14th International Conference on Availability, Reliability and Security (ARES 2019) (ARES '19), August 26-29, 2019, Canterbury, United Kingdo

    Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats

    Full text link
    Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.Comment: ACM Computing Surveys, 2022, 35 pages, 10 Figures, 8 Table
    • …
    corecore