146 research outputs found

    Investigation on Evolving Single-Carrier NOMA into Multi-Carrier NOMA in 5G

    Full text link
    © 2013 IEEE. Non-orthogonal multiple access (NOMA) is one promising technology, which provides high system capacity, low latency, and massive connectivity, to address several challenges in the fifth-generation wireless systems. In this paper, we first reveal that the NOMA techniques have evolved from single-carrier NOMA (SC-NOMA) into multi-carrier NOMA (MC-NOMA). Then, we comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NOMA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access (PDMA). Meanwhile, we consider that the research challenges of SCMA and PDMA might be addressed with the stimulation of the advanced and matured progress in SC-NOMA. Finally, yet importantly, we investigate the emerging applications, and point out the future research trends of the MC-NOMA techniques, which could be straightforwardly inspired by the various deployments of SC-NOMA

    D4.2 Final report on trade-off investigations

    Full text link
    Research activities in METIS WP4 include several as pects related to the network-level of future wireless communication networks. Thereby, a large variety of scenarios is considered and solutions are proposed to serve the needs envis ioned for the year 2020 and beyond. This document provides vital findings about several trade-offs that need to be leveraged when designing future network-level solutions. In more detail, it elaborates on the following trade- offs: • Complexity vs. Performance improvement • Centralized vs. Decentralized • Long time-scale vs. Short time-scale • Information Interflow vs. Throughput/Mobility enha ncement • Energy Efficiency vs. Network Coverage and Capacity Outlining the advantages and disadvantages in each trade-off, this document serves as a guideline for the application of different network-level solutions in different situations and therefore greatly assists in the design of future communication network architectures.Aydin, O.; Ren, Z.; Bostov, M.; Lakshmana, TR.; Sui, Y.; Svensson, T.; Sun, W.... (2014). D4.2 Final report on trade-off investigations. http://hdl.handle.net/10251/7676

    Improved IDMA for Multiple Access of 5G

    Get PDF
    Due to its good performance and low complexity, IDMA is believed to be an important technique for future radio access (FRA). However, its performances are highly affected by the interleaver design. In this paper we propose two contributions to improve the performance of the IDMA. First, we propose a new interleaver design, called "NLM interleaver", which improves the computational complexity, reduces the bandwidth consumption and the memory requirements of the system, provides the quasi-orthogonal spreading codes and interleavers with a high security and offers infinite sets of codes and interleavers based on only one parameter. Second, we propose a new user grouping algorithm based on the correlation function to improve the resources (Codes, Interleavers). All users are divided into several equal-size groups where each group's data transmitted at the same time, over the same frequencies and the same interleaver. The simulation results indicate that the proposed scheme can achieve better performances compared to the existing algorithms

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&
    • …
    corecore