83 research outputs found

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Design and analysis of a 3-dimensional cluster multicomputer architecture using optical interconnection for petaFLOP computing

    Get PDF
    In this dissertation, the design and analyses of an extremely scalable distributed multicomputer architecture, using optical interconnects, that has the potential to deliver in the order of petaFLOP performance is presented in detail. The design takes advantage of optical technologies, harnessing the features inherent in optics, to produce a 3D stack that implements efficiently a large, fully connected system of nodes forming a true 3D architecture. To adopt optics in large-scale multiprocessor cluster systems, efficient routing and scheduling techniques are needed. To this end, novel self-routing strategies for all-optical packet switched networks and on-line scheduling methods that can result in collision free communication and achieve real time operation in high-speed multiprocessor systems are proposed. The system is designed to allow failed/faulty nodes to stay in place without appreciable performance degradation. The approach is to develop a dynamic communication environment that will be able to effectively adapt and evolve with a high density of missing units or nodes. A joint CPU/bandwidth controller that maximizes the resource allocation in this dynamic computing environment is introduced with an objective to optimize the distributed cluster architecture, preventing performance/system degradation in the presence of failed/faulty nodes. A thorough analysis, feasibility study and description of the characteristics of a 3-Dimensional multicomputer system capable of achieving 100 teraFLOP performance is discussed in detail. Included in this dissertation is throughput analysis of the routing schemes, using methods from discrete-time queuing systems and computer simulation results for the different proposed algorithms. A prototype of the 3D architecture proposed is built and a test bed developed to obtain experimental results to further prove the feasibility of the design, validate initial assumptions, algorithms, simulations and the optimized distributed resource allocation scheme. Finally, as a prelude to further research, an efficient data routing strategy for highly scalable distributed mobile multiprocessor networks is introduced

    Report on Workshop on High Performance Computing and Communications for Grand Challenge Applications: Computer Vision, Speech and Natural Language Processing, and Artificial Intelligence

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / IRI-921259
    • …
    corecore