4,007 research outputs found

    Towards an All-Purpose Content-Based Multimedia Information Retrieval System

    Full text link
    The growth of multimedia collections - in terms of size, heterogeneity, and variety of media types - necessitates systems that are able to conjointly deal with several forms of media, especially when it comes to searching for particular objects. However, existing retrieval systems are organized in silos and treat different media types separately. As a consequence, retrieval across media types is either not supported at all or subject to major limitations. In this paper, we present vitrivr, a content-based multimedia information retrieval stack. As opposed to the keyword search approach implemented by most media management systems, vitrivr makes direct use of the object's content to facilitate different types of similarity search, such as Query-by-Example or Query-by-Sketch, for and, most importantly, across different media types - namely, images, audio, videos, and 3D models. Furthermore, we introduce a new web-based user interface that enables easy-to-use, multimodal retrieval from and browsing in mixed media collections. The effectiveness of vitrivr is shown on the basis of a user study that involves different query and media types. To the best of our knowledge, the full vitrivr stack is unique in that it is the first multimedia retrieval system that seamlessly integrates support for four different types of media. As such, it paves the way towards an all-purpose, content-based multimedia information retrieval system

    Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders

    Get PDF
    Supervised multi-channel audio source separation requires extracting useful spectral, temporal, and spatial features from the mixed signals. The success of many existing systems is therefore largely dependent on the choice of features used for training. In this work, we introduce a novel multi-channel, multi-resolution convolutional auto-encoder neural network that works on raw time-domain signals to determine appropriate multi-resolution features for separating the singing-voice from stereo music. Our experimental results show that the proposed method can achieve multi-channel audio source separation without the need for hand-crafted features or any pre- or post-processing

    Fast GPU audio identification

    Get PDF
    Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.Presentado en el X Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    CHORUS Deliverable 3.4: Vision Document

    Get PDF
    The goal of the CHORUS Vision Document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area and to highlight trends and challenges in this domain. The vision of CHORUS is strongly connected to the CHORUS Roadmap Document (D2.3). A concise document integrating the outcomes of the two deliverables will be prepared for the end of the project (NEM Summit)

    Closing the loop: assisting archival appraisal and information retrieval in one sweep

    Get PDF
    In this article, we examine the similarities between the concept of appraisal, a process that takes place within the archives, and the concept of relevance judgement, a process fundamental to the evaluation of information retrieval systems. More specifically, we revisit selection criteria proposed as result of archival research, and work within the digital curation communities, and, compare them to relevance criteria as discussed within information retrieval's literature based discovery. We illustrate how closely these criteria relate to each other and discuss how understanding the relationships between the these disciplines could form a basis for proposing automated selection for archival processes and initiating multi-objective learning with respect to information retrieval

    Mining oral history collections using music information retrieval methods

    Get PDF
    Recent work at the Sussex Humanities Lab, a digital humanities research program at the University of Sussex, has sought to address an identified gap in the provision and use of audio feature analysis for spoken word collections. Traditionally, oral history methodologies and practices have placed emphasis on working with transcribed textual surrogates, rather than the digital audio files created during the interview process. This provides a pragmatic access to the basic semantic content, but obviates access to other potentially meaningful aural information; our work addresses the potential for methods to explore this extra-semantic information, by working with the audio directly. Audio analysis tools, such as those developed within the established field of Music Information Retrieval (MIR), provide this opportunity. This paper describes the application of audio analysis techniques and methods to spoken word collections. We demonstrate an approach using freely available audio and data analysis tools, which have been explored and evaluated in two workshops. We hope to inspire new forms of content analysis which complement semantic analysis with investigation into the more nuanced properties carried in audio signals

    Signal processing for improved MPEG-based communication systems

    Get PDF

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Hashing for Multimedia Similarity Modeling and Large-Scale Retrieval

    Get PDF
    In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based solution for audio-visual similarity modeling and apply it to the audio-visual sound source localization problem. We show that synchronized signals in audio and visual modalities demonstrate similar temporal changing patterns in certain feature spaces. We propose to use a permutation-based random hashing technique to capture the temporal order dynamics of audio and visual features by hashing them along the temporal axis into a common Hamming space. In this way, the audio-visual correlation problem is transformed into a similarity search problem in the Hamming space. Our hashing-based audio-visual similarity modeling has shown superior performances in the localization and segmentation of sounding objects in videos. The success of the permutation-based hashing method motivates us to generalize and formally define the supervised ranking-based hashing problem, and study its application to large-scale image retrieval. Specifically, we propose an effective supervised learning procedure to learn optimized ranking-based hash functions that can be used for large-scale similarity search. Compared with the randomized version, the optimized ranking-based hash codes are much more compact and discriminative. Moreover, it can be easily extended to kernel space to discover more complex ranking structures that cannot be revealed in linear subspaces. Experiments on large image datasets demonstrate the effectiveness of the proposed method for image retrieval. We further studied the ranking-based hashing method for the cross-media similarity search problem. Specifically, we propose two optimization methods to jointly learn two groups of linear subspaces, one for each media type, so that features\u27 ranking orders in different linear subspaces maximally preserve the cross-media similarities. Additionally, we develop this ranking-based hashing method in the cross-media context into a flexible hashing framework with a more general solution. We have demonstrated through extensive experiments on several real-world datasets that the proposed cross-media hashing method can achieve superior cross-media retrieval performances against several state-of-the-art algorithms. Lastly, to make better use of the supervisory label information, as well as to further improve the efficiency and accuracy of supervised hashing, we propose a novel multimedia discrete hashing framework that optimizes an instance-wise loss objective, as compared to the pairwise losses, using an efficient discrete optimization method. In addition, the proposed method decouples the binary codes learning and hash function learning into two separate stages, thus making the proposed method equally applicable for both single-media and cross-media search. Extensive experiments on both single-media and cross-media retrieval tasks demonstrate the effectiveness of the proposed method

    Engineering systematic musicology : methods and services for computational and empirical music research

    Get PDF
    One of the main research questions of *systematic musicology* is concerned with how people make sense of their musical environment. It is concerned with signification and meaning-formation and relates musical structures to effects of music. These fundamental aspects can be approached from many different directions. One could take a cultural perspective where music is considered a phenomenon of human expression, firmly embedded in tradition. Another approach would be a cognitive perspective, where music is considered as an acoustical signal of which perception involves categorizations linked to representations and learning. A performance perspective where music is the outcome of human interaction is also an equally valid view. To understand a phenomenon combining multiple perspectives often makes sense. The methods employed within each of these approaches turn questions into concrete musicological research projects. It is safe to say that today many of these methods draw upon digital data and tools. Some of those general methods are feature extraction from audio and movement signals, machine learning, classification and statistics. However, the problem is that, very often, the *empirical and computational methods require technical solutions* beyond the skills of researchers that typically have a humanities background. At that point, these researchers need access to specialized technical knowledge to advance their research. My PhD-work should be seen within the context of that tradition. In many respects I adopt a problem-solving attitude to problems that are posed by research in systematic musicology. This work *explores solutions that are relevant for systematic musicology*. It does this by engineering solutions for measurement problems in empirical research and developing research software which facilitates computational research. These solutions are placed in an engineering-humanities plane. The first axis of the plane contrasts *services* with *methods*. Methods *in* systematic musicology propose ways to generate new insights in music related phenomena or contribute to how research can be done. Services *for* systematic musicology, on the other hand, support or automate research tasks which allow to change the scope of research. A shift in scope allows researchers to cope with larger data sets which offers a broader view on the phenomenon. The second axis indicates how important Music Information Retrieval (MIR) techniques are in a solution. MIR-techniques are contrasted with various techniques to support empirical research. My research resulted in a total of thirteen solutions which are placed in this plane. The description of seven of these are bundled in this dissertation. Three fall into the methods category and four in the services category. For example Tarsos presents a method to compare performance practice with theoretical scales on a large scale. SyncSink is an example of a service
    corecore