1,955 research outputs found

    Recent advances in the hardware architecture of flat display devices

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2007Includes bibliographical References (leaves: 115-117)Text in English; Abstract: Turkish and Englishxiii, 133 leavesThesis will describe processing board hardware design for flat panel displays with integrated digital reception, the design challenges in flat panel displays with integrated digital reception explained with details. Thesis also includes brief explanation of flat panel technology and processing blocks. Explanations of building blocks of TV and flat panel displays are given before design stage for better understanding of design stage. Hardware design stage of processing board is investigated in two major steps, schematic design and layout design. First step of the schematic design is system level block diagram design. Schematic diagram is the detailed application level hardware design and layout is the implementation level of the design. System level, application level and implementation level hardware design of the TV processing board is described with details in thesis. Design challenges, considerations and solutions are defined in advance for flat panel displays

    Fuzzy memoization for floating-point multimedia applications

    Get PDF
    Instruction memoization is a promising technique to reduce the power consumption and increase the performance of future low-end/mobile multimedia systems. Power and performance efficiency can be improved by reusing instances of an already executed operation. Unfortunately, this technique may not always be worth the effort due to the power consumption and area impact of the tables required to leverage an adequate level of reuse. In this paper, we introduce and evaluate a novel way of understanding multimedia floating-point operations based on the fuzzy computation paradigm: performance and power consumption can be improved at the cost of small precision losses in computation. By exploiting this implicit characteristic of multimedia applications, we propose a new technique called tolerant memoization. This technique expands the capabilities of classic memoization by associating entries with similar inputs to the same output. We evaluate this new technique by measuring the effect of tolerant memoization for floating-point operations in a low-power multimedia processor and discuss the trade-offs between performance and quality of the media outputs. We report energy improvements of 12 percent for a set of key multimedia applications with small LUT of 6 Kbytes, compared to 3 percent obtained using previously proposed techniques.Peer ReviewedPostprint (published version

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Complex Library Mapping for Embedded Software Using Symbolic Algebra

    Get PDF
    Embedded software designers often use libraries that have been pre-optimized for a given processor to achieve higher code quality. However, using such libraries in legacy code optimization is nontrivial and typically requires manual intervention. This paper presents a methodology that maps algorithmic constructs of the software specification to a library of complex software elements. This library-mapping step is automated by using symbolic algebra techniques. We illustrate the advantages of our methodology by optimizing an algorithmic level description of MPEG Layer III (MP3) audio decoder for the Badge4 [2] portable embedded system. During the optimization process we use commercially available libraries with complex elements ranging from simple mathematical functions such as exp to the IDCT routine. We implemented and measured the performance and energy consumption of the MP3 decoder software on Badge4 running embedded Linux operating system. The optimized MP3 audio decoder runs 300 times faster than the original code obtained from the standards body while consuming 400 times less energy. Since our optimized MP3 decoder runs 3.5 times faster than real-time, additional energy can be saved by using processor frequency and voltage scaling

    TechNews digests: Jan - Nov 2008

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Database of audio records

    Get PDF
    Diplomka a prakticky castDiplome with partical part

    Adaptive buffer power save mechanism for mobile multimedia streaming

    Get PDF
    With the proliferation of wireless networks, the use of mobile devices to stream multimedia is growing in popularity. Although the devices are improving in that they are becoming smaller, more complex and capable of running more applications than ever before, there is one aspect of them that is lagging behind. Batteries have seen little development, even though they are one of the most important parts of the devices. Multimedia streaming puts extra pressure on batteries, causing them to discharge faster. This often means that streaming tasks can not be completed, resulting in significant user dissatisfaction. Consequently, effort is required to devise mechanisms to enable and increase in battery life while streaming multimedia. In this context, this thesis presents a novel algorithm to save power in mobile devices during the streaming of multimedia content. The proposed Adaptive-Buffer Power Save Mechanism (AB-PSM) controls how the data is sent over wireless networks, achieving significant power savings. There is little or no effect on the user and the algorithm is very simple to implement. The thesis describes tests which show the effectiveness of AB-PSM in comparison with the legacy power save mechanism present in IEEE 802.11. The thesis also presents a detailed overview of the IEEE 802.11 protocols and an in-depth literature review in the area of power saving during multimedia streaming. A novel analysis of how the battery of a mobile device is affected by multimedia streaming in its different stages is given. A total-power-save algorithm is then described as a possible extension to the Adaptive-Buffer Power Save Mechanism

    Energy-efficient acceleration of MPEG-4 compression tools

    Get PDF
    We propose novel hardware accelerator architectures for the most computationally demanding algorithms of the MPEG-4 video compression standard-motion estimation, binary motion estimation (for shape coding), and the forward/inverse discrete cosine transforms (incorporating shape adaptive modes). These accelerators have been designed using general low-energy design philosophies at the algorithmic/architectural abstraction levels. The themes of these philosophies are avoiding waste and trading area/performance for power and energy gains. Each core has been synthesised targeting TSMC 0.09 μm TCBN90LP technology, and the experimental results presented in this paper show that the proposed cores improve upon the prior art
    corecore