123,684 research outputs found

    Graph Algorithms and Complexity Aspects on Special Graph Classes

    Get PDF
    Graphs are a very flexible tool within mathematics, as such, numerous problems can be solved by formulating them as an instance of a graph. As a result, however, some of the structures found in real world problems may be lost in a more general graph. An example of this is the 4-Colouring problem which, as a graph problem, is NP-complete. However, when a map is converted into a graph, we observe that this graph has structural properties, namely being (K_5, K_{3,3})-minor-free which can be exploited and as such there exist algorithms which can find 4-colourings of maps in polynomial time. This thesis looks at problems which are NP-complete in general and determines the complexity of the problem when various restrictions are placed on the input, both for the purpose of finding tractable solutions for inputs which have certain structures, and to increase our understanding of the point at which a problem becomes NP-complete. This thesis looks at four problems over four chapters, the first being Parallel Knock-Out. This chapter will show that Parallel Knock-Out can be solved in O(n+m) time on P_4-free graphs, also known as cographs, however, remains hard on split graphs, a subclass of P_5-free graphs. From this a dichotomy is shown on PkP_k-free graphs for any fixed integer kk. The second chapter looks at Minimal Disconnected Cut. Along with some smaller results, the main result in this chapter is another dichotomy theorem which states that Minimal Disconnected Cut is polynomial time solvable for 3-connected planar graphs but NP-hard for 2-connected planar graphs. The third chapter looks at Square Root. Whilst a number of results were found, the work in this thesis focuses on the Square Root problem when restricted to some classes of graphs with low clique number. The final chapter looks at Surjective H-Colouring. This chapter shows that Surjective H-Colouring is NP-complete, for any fixed, non-loop connected graph H with two reflexive vertices and for any fixed graph H’ which can be obtained from H by replacing vertices with true twins. This result enabled us to determine the complexity of Surjective H-Colouring on all fixed graphs H of size at most 4

    Combinatorial complexity in o-minimal geometry

    Full text link
    In this paper we prove tight bounds on the combinatorial and topological complexity of sets defined in terms of nn definable sets belonging to some fixed definable family of sets in an o-minimal structure. This generalizes the combinatorial parts of similar bounds known in the case of semi-algebraic and semi-Pfaffian sets, and as a result vastly increases the applicability of results on combinatorial and topological complexity of arrangements studied in discrete and computational geometry. As a sample application, we extend a Ramsey-type theorem due to Alon et al., originally proved for semi-algebraic sets of fixed description complexity to this more general setting.Comment: 25 pages. Revised version. To appear in the Proc. London Math. So

    Finite Groups of Essential Dimension 2

    Full text link
    We classify all finite groups of essential dimension 2 over an algebraically closed field of characteristic 0.Comment: 30 pages (To appear in Commentarii Mathematici Helvetici
    • …
    corecore