123 research outputs found

    Meteorological satellites: Past, present, and future

    Get PDF
    Past developments, accomplishments and future potential of meteorological satellites are discussed. Meteorological satellite design is described in detail. Space platforms and their meteorological applications are discussed. User needs are also discussed

    Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    Get PDF
    An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload

    Earth Observatory Satellite (EOS) Definition Phase Report, Volume 1

    Get PDF
    System definition studies were conducted of the Earth Observatory Satellite (EOS). The studies show that the concept of an Earth Observatory Satellite in a near-earth, sun-synchronous orbit would make a unique contribution to the goals of a coordinated program for acquisition of data for environmental research with applications to earth resource inventory and management. The technical details for the proposed development of sensors, spacecraft, and a ground data processing system are presented

    Remote sensing data handbook

    Get PDF
    A digest of information on remote sensor data systems is given. It includes characteristics of spaceborne sensors and the supportive systems immediately associated therewith. It also includes end-to-end systems information that will assist the user in appraising total data system impact produced by a sensor. The objective is to provide a tool for anticipating the complexity of systems and potential data system problems as new user needs are generated. Materials in this handbook span sensor systems from the present to those planned for use in the 1990's. Sensor systems on all planned missions are presented in digest form, condensed from data as available at the time of compilation. Projections are made of anticipated systems

    Atmospheric remote sensing and radiopropagation: from numerical modeling to spaceborne and terrestrial applications

    Get PDF
    The remote sensing of electromagnetic wave properties is probably the most viable and fascinating way to observe and study physical media, comprising our planet and its atmosphere, at the same time ensuring a proper continuity in the observations. Applications are manifold and the scientific community has been importantly studying and investing on new technologies, which would let us widen our knowledge of what surrounds us. This thesis aims at showing some novel techniques and corresponding applications in the field of the atmospheric remote sensing and radio-propagation, at both microwave and optical wavelengths. The novel Sun-tracking microwave radiometry technique is shown. The antenna noise temperature of a ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and off-the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature of the Sun disk emission at K and Ka frequency bands and in the under-explored millimeter-wave V and W bands can be estimated by adopting different techniques. Parametric prediction models for retrieving all-weather atmospheric extinction from ground-based microwave radiometers are tested and their accuracy evaluated. Moreover, a characterization of suspended clouds in terms of atmospheric path attenuation is presented, by exploiting a stochastic approach used to model the time evolution of the cloud contribution. A model chain for the prediction of the tropospheric channel for the downlink of interplanetary missions operating above Ku band is proposed. On top of a detailed description of the approach, the chapter presents the validation results and examples of the model-chain online operation. Online operation has already been tested within a feasibility study applied to the BepiColombo mission to Mercury operated by the European Space Agency (ESA) and by exploiting the Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA), thanks to the ESA cross-support service. A preliminary (and successful) validation of the model-chain has been carried out by comparing the simulated signal-to-noise ratio with the one received from Hayabusa-2. At the next ITU World Radiocommunication Conference 2019, Agenda Item 1.13 will address the identification and the possible additional allocation of radio-frequency spectrum to serve the future development of systems supporting the fifth generation of cellular mobile communications (5G). The potential impact of International Mobile Telecommunications (IMT) deployments is shown in terms of received radio frequency interference by ESA’s telecommunication links. Received interference can derive from several radio-propagation mechanisms, which strongly depend on atmospheric conditions, radio frequency, link availability, distance and path topography; at any time a single mechanism, or more than one may be present. Results are shown in terms of required separation distances, i.e. the minimum distance between the earth station and the IMT station ensuring that the protection criteria for the earth station are met

    Report on active and planned spacecraft and experiments

    Get PDF
    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries

    Digest of celestial X-ray missions and experiments

    Get PDF
    Information on instruments, the platforms that carried them, and the data they gathered is presented. Instrument selection was confined to detectors operating in the 0.20 to 300 keV range. Included are brief descriptions of the spacecraft, experiment packages and missions. Cross-referenced indexes are provided for types of instruments, energy ranges, time spans covered, positional catalogs and observational catalogs. Data sets from these experiments (NSSDC) are described

    The Nimbus-6 User's Guide

    Get PDF
    Background information was given on the Nimbus 6 spacecraft and experiments as a basis for selecting, obtaining, and utilizing Nimbus 6 data in research studies. The basic spacecraft system operation and the objectives of the Nimbus 6 flight are outlined, followed by a detailed discussion of each of the experiments. The format, archiving, and access to the data are also described. Finally, the contents and format of the Nimbus 6 data catalogs are described. These catalogs will be issued periodically after the launch of Nimbus 6. They will contain representative pictorial data and daily temperature, humidity, infrared and radiometer data obtained during each period, as well as information on the collection and availability of all Nimbus 6 data

    Space station systems analysis study. Part 2, Volume 3: Appendixes, Book 1. Program requirements documentation

    Get PDF
    The objective elements representative of the kinds of space activities that will be supported by the space construction base (SCB) are discussed in (1) a brief mission overview including the primary purpose and general objectives; (2) descriptions of the processes involved (where applicable), the mission hardware, the principal activities to be undertaken, the test requirements, and the principal tests; and (3) the SCB requirements including such items as special devices (e.g., fabrication modules, assembly or construction fixtures, cranes, and airlocks), power, data management and communications, waste management, environmental control, safety, and logistics. Each program option is then described in terms of the objective elements it supports, its orbit, the general makeup of the SCB, the transportation approach, and the program schedule goals. The specific requirements that are imposed on the SCB in order to support program option L are given

    Geosynchronous platform definition study. Volume 5: Geosynchronous platform synthesis

    Get PDF
    The development is described of the platform configurations, support subsystems, mission equipment, and servicing concepts. A common support module is developed; subsystem concepts are traded off; data relay, TDRS, earth observational, astro-physics, and advanced navigation and traffic control mission equipment concepts are postulated; and ancillary equipment required for delivery and on-orbit servicing interfaces with geosynchronous platforms is grossly defined. The general approach was to develop a platform concept capable of evolving through three on-orbit servicing modes: remote, EVA, and shirtsleeve. The definition of the equipment is to the assembly level. Weight, power, and volumetric data are compiled for all the platforms
    • …
    corecore