32 research outputs found

    Modelling the effects of social networks on activity and travel behaviour

    Get PDF
    Activity-based models of transport demand are increasingly used by governments, engineering firms and consultants to predict the impact of various design and planning decisions on travel and consequently on noise emissions, energy consumption, accessibility and other performance indicators. In this context, non-discretionary activities, such as work and school, can be relatively easily explained by the traveller’s sociodemographic characteristics and generalised travel costs. However, participation in, and scheduling of, discretionary and joint activities are not so easily redicted. Understanding the social network that lies on top of the spatial network could lead to better prediction of social activity schedules and better forecasts of travel patterns for joint activities. Existing models of activity-travel behaviour do not consider joint activities in detail, except within households to a limited extent. A recent attempt developed at ETH Zurich to incorporate social networks in a single-day optimisation scheduling model did not model joint activities as such, rather rewarding individuals for scheduling activities at the same location and at the same time as their friends. Realistic social networks were also not incorporated. The aim of this thesis is to contribute to this rapidly expanding field by developing a simulation of activity and travel behaviour incorporating social processes and joint activities to investigate the effects on activity and travel behaviour over a simulated period of weeks. The model developed is intended as a proof-of-concept. In order to achieve this aim, an agent-based simulation was designed, implemented in Java, and calibrated and partly verified with real-world data. The model generates activities on a daily basis, including the time of day and duration of the activity. An interaction protocol has been developed to model the activity decision process. Data collected in Eindhoven on social and joint activities and social networks has been used for calibration and verification. Alongside the model development, several issues are addressed, such as exploring which parameters are useful and their effects, the data required for the validation of agent-based travel behaviour models, and whether the addition of social networks to models of this type makes adifference. Sensitivity testing was undertaken to explore the effects of parameters, which was applied to increasingly more complex versions of the model (starting from one day of outputs with no interactions between individuals and finishing with full interactions over many days). This showed that the model performed as expected when certain parameters were altered. Due to the components included in the model, scenarios of interest to policy makers (such as changes in population, land-use changes, and changes in institutional contexts) can be explored. Altering the structure of the in- put social networks and the interaction protocols showed that these inputs do have a difference on the outputs of the model. As a result, these elements of the model require data collection on the social network structure and the decision processes for each local instantiation. Two more "traditional" transport planning policy scenarios, an increase in free time and an increase in travel cost, showed that the model performs as expected for these scenarios. It is shown that the use of agent-based modelling is useful in permitting the incorporation of social networks. The social network can have a significant impact on model results and therefore the decisions made by planners and stakeholders. The model can be extended further in several different directions as new theories are developed and data sets are collected

    Transport systems analysis : models and data

    Get PDF
    Funding: This research project has been funded by Spanish R+D Programs, specifcally under Grant PID2020-112967GB-C31.Rapid advancements in new technologies, especially information and communication technologies (ICT), have significantly increased the number of sensors that capture data, namely those embedded in mobile devices. This wealth of data has garnered particular interest in analyzing transport systems, with some researchers arguing that the data alone are sufficient enough to render transport models unnecessary. However, this paper takes a contrary position and holds that models and data are not mutually exclusive but rather depend upon each other. Transport models are built upon established families of optimization and simulation approaches, and their development aligns with the scientific principles of operations research, which involves acquiring knowledge to derive modeling hypotheses. We provide an overview of these modeling principles and their application to transport systems, presenting numerous models that vary according to study objectives and corresponding modeling hypotheses. The data required for building, calibrating, and validating selected models are discussed, along with examples of using data analytics techniques to collect and handle the data supplied by ICT applications. The paper concludes with some comments on current and future trends

    Passengers, Crowding and Complexity : Models for passenger oriented public transport

    Get PDF
    Passengers, Crowding and Complexity was written as part of the Complexity in Public Transport (ComPuTr) project funded by the Netherlands Organisation for Scientific Research (NWO). This thesis studies in three parts how microscopic data can be used in models that have the potential to improve utilization, while preventing excess crowding. _In the first part_, the emergence of crowding caused by interactions between the behavior of passengers and the public transport operators who plan the vehicle capacities is modeled. Using simulations the impact of the information disclosed to the passengers by public transport operators on the utilization and passenger satisfaction is analyzed. A quasi-experiment with a large group of students in a similar setting finds that four types of behavior can be observed. _In the second part_, algorithms that can extract temporal and spatial patterns from smart card data are developed and a first step to use such patterns in an agent based simulation is made. Furthermore, a way to generate synthetic smart card data is proposed. This is useful for the empirical validation of algorithms that analyze such data. _In the third and final part_ it is considered how individual decision strategies can be developed in situations where there exists uncertainty ab

    The physics of traffic and regional development

    Get PDF
    This contribution summarizes and explains various principles from physics which are used for the simulation of traffic flows in large street networks, the modelling of destination, transport mode, and route choice, or the simulation of urban growth and regional development. The methods stem from many-particle physics, from kinetic gas theory, or fluid dynamics. They involve energy and entropy considerations, transfer the law of gravity, apply cellular automata and require methods from evolutionary game theory. In this way, one can determine interaction forces among driver-vehicle units, reproduce breakdowns of traffic including features of synchronized congested flow, or understand changing usage patterns of alternative roads. One can also describe daily activity patterns based on decision models, simulate migration streams and model urban growth as a particular kind of aggregation process

    A framework for evaluating the impact of communication on performance in large-scale distributed urban simulations

    Get PDF
    A primary motivation for employing distributed simulation is to enable the execution of large-scale simulation workloads that cannot be handled by the resources of a single stand-alone computing node. To make execution possible, the workload is distributed among multiple computing nodes connected to one another via a communication network. The execution of a distributed simulation involves alternating phases of computation and communication to coordinate the co-operating nodes and ensure correctness of the resulting simulation outputs. Reliably estimating the execution performance of a distributed simulation can be difficult due to non-deterministic execution paths involved in alternating computation and communication operations. However, performance estimates are useful as a guide for the simulation time that can be expected when using a given set of computing resources. Performance estimates can support decisions to commit time and resources to running distributed simulations, especially where significant amounts of funds or computing resources are necessary. Various performance estimation approaches are employed in the distributed computing literature, including the influential Bulk Synchronous Parallel (BSP) and LogP models. Different approaches make various assumptions that render them more suitable for some applications than for others. Actual performance depends on characteristics inherent to each distributed simulation application. An important aspect of these individual characteristics is the dynamic relationship between the communication and computation phases of the distributed simulation application. This work develops a framework for estimating the performance of distributed simulation applications, focusing mainly on aspects relevant to the dynamic relationship between communication and computation during distributed simulation execution. The framework proposes a meta-simulation approach based on the Multi-Agent Simulation (MAS) paradigm. Using the approach proposed by the framework, meta-simulations can be developed to investigate the performance of specific distributed simulation applications. The proposed approach enables the ability to compare various what-if scenarios. This ability is useful for comparing the effects of various parameters and strategies such as the number of computing nodes, the communication strategy, and the workload-distribution strategy. The proposed meta-simulation approach can also aid a search for optimal parameters and strategies for specific distributed simulation applications. The framework is demonstrated by implementing a meta-simulation which is based on case studies from the Urban Simulation domain
    corecore