69,643 research outputs found

    Numerical Analysis of a Finite Volume-element Method for Unsteady Diffusion-reaction Equation

    Get PDF
    The paper presents the numerical analysis of a finite volume-element method for solving the unsteady scalar reaction-diffusion equations. The main idea of the method is to combine the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. By implementing one-dimensional analysis, it is showed that the stability of the numerical scheme is given by the condition , and the scheme is consistent with an order of accuracy of with respect to norm

    On discontinuous Galerkin methods

    Get PDF
    Discontinuous Galerkin methods have received considerable attention in recent years for applications to many problems in which convection and diffusion terms are present. Several alternatives for treating the diffusion flux effects have been introduced, as well as, for treatment of the convective flux terms. This report summarizes some of the treatments that have been proposed. It also considers how elementary finite volume methods may be considered as the most primative form of a discontinuous Galerkin method as well as how it may be formed as a finite element method. Several numerical examples are included in the report which summarize results for discontinuous Galerkin solutions of one-dimensional problems with a scalar variable. Results are presented for diffusion-reaction problems, convection-diffusion problems, and a special problem with a turning point. We identify aspects which relate to accuracy as well as stability of the method

    Accurate macroscale modelling of spatial dynamics in multiple dimensions

    Full text link
    Developments in dynamical systems theory provides new support for the macroscale modelling of pdes and other microscale systems such as Lattice Boltzmann, Monte Carlo or Molecular Dynamics simulators. By systematically resolving subgrid microscale dynamics the dynamical systems approach constructs accurate closures of macroscale discretisations of the microscale system. Here we specifically explore reaction-diffusion problems in two spatial dimensions as a prototype of generic systems in multiple dimensions. Our approach unifies into one the modelling of systems by a type of finite elements, and the `equation free' macroscale modelling of microscale simulators efficiently executing only on small patches of the spatial domain. Centre manifold theory ensures that a closed model exist on the macroscale grid, is emergent, and is systematically approximated. Dividing space either into overlapping finite elements or into spatially separated small patches, the specially crafted inter-element/patch coupling also ensures that the constructed discretisations are consistent with the microscale system/PDE to as high an order as desired. Computer algebra handles the considerable algebraic details as seen in the specific application to the Ginzburg--Landau PDE. However, higher order models in multiple dimensions require a mixed numerical and algebraic approach that is also developed. The modelling here may be straightforwardly adapted to a wide class of reaction-diffusion PDEs and lattice equations in multiple space dimensions. When applied to patches of microscopic simulations our coupling conditions promise efficient macroscale simulation.Comment: some figures with 3D interaction when viewed in Acrobat Reader. arXiv admin note: substantial text overlap with arXiv:0904.085

    Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems

    Full text link
    We present a fully adaptive multiresolution scheme for spatially two-dimensional, possibly degenerate reaction-diffusion systems, focusing on combustion models and models of pattern formation and chemotaxis in mathematical biology. Solutions of these equations in these applications exhibit steep gradients, and in the degenerate case, sharp fronts and discontinuities. The multiresolution scheme is based on finite volume discretizations with explicit time stepping. The multiresolution representation of the solution is stored in a graded tree. By a thresholding procedure, namely the elimination of leaves that are smaller than a threshold value, substantial data compression and CPU time reduction is attained. The threshold value is chosen optimally, in the sense that the total error of the adaptive scheme is of the same slope as that of the reference finite volume scheme. Since chemical reactions involve a large range of temporal scales, but are spatially well localized (especially in the combustion model), a locally varying adaptive time stepping strategy is applied. It turns out that local time stepping accelerates the adaptive multiresolution method by a factor of two, while the error remains controlled.Comment: 27 pages, 14 figure

    VAGO method for the solution of elliptic second-order boundary value problems

    Get PDF
    Mathematical physics problems are often formulated using differential oprators of vector analysis - invariant operators of first order, namely, divergence, gradient and rotor operators. In approximate solution of such problems it is natural to employ similar operator formulations for grid problems, too. The VAGO (Vector Analysis Grid Operators) method is based on such a methodology. In this paper the vector analysis difference operators are constructed using the Delaunay triangulation and the Voronoi diagrams. Further the VAGO method is used to solve approximately boundary value problems for the general elliptic equation of second order. In the convection-diffusion-reaction equation the diffusion coefficient is a symmetric tensor of second order
    • â€Ķ
    corecore