9,383 research outputs found

    Viscous Taylor droplets in axisymmetric and planar tubes: from Bretherton's theory to empirical models

    Get PDF
    The aim of this study is to derive accurate models for quantities characterizing the dynamics of droplets of non-vanishing viscosity in capillaries. In particular, we propose models for the uniform-film thickness separating the droplet from the tube walls, for the droplet front and rear curvatures and pressure jumps, and for the droplet velocity in a range of capillary numbers, CaCa, from 10−410^{-4} to 11 and inner-to-outer viscosity ratios, λ\lambda, from 00, i.e. a bubble, to high viscosity droplets. Theoretical asymptotic results obtained in the limit of small capillary number are combined with accurate numerical simulations at larger CaCa. With these models at hand, we can compute the pressure drop induced by the droplet. The film thickness at low capillary numbers (Ca<10−3Ca<10^{-3}) agrees well with Bretherton's scaling for bubbles as long as λ<1\lambda<1. For larger viscosity ratios, the film thickness increases monotonically, before saturating for λ>103\lambda>10^3 to a value 22/32^{2/3} times larger than the film thickness of a bubble. At larger capillary numbers, the film thickness follows the rational function proposed by Aussillous \& Qu\'er\'e (2000) for bubbles, with a fitting coefficient which is viscosity-ratio dependent. This coefficient modifies the value to which the film thickness saturates at large capillary numbers. The velocity of the droplet is found to be strongly dependent on the capillary number and viscosity ratio. We also show that the normal viscous stresses at the front and rear caps of the droplets cannot be neglected when calculating the pressure drop for Ca>10−3Ca>10^{-3}

    Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid

    Get PDF
    In this paper we examine some general features of the time-dependent dynamics of drop deformation and breakup at low Reynolds numbers. The first aspect of our study is a detailed numerical investigation of the ‘end-pinching’ behaviour reported in a previous experimental study. The numerics illustrate the effects of viscosity ratio and initial drop shape on the relaxation and/or breakup of highly elongated droplets in an otherwise quiescent fluid. In addition, the numerical procedure is used to study the simultaneous development of capillary-wave instabilities at the fluid-fluid interface of a very long, cylindrically shaped droplet with bulbous ends. Initially small disturbances evolve to finite amplitude and produce very regular drop breakup. The formation of satellite droplets, a nonlinear phenomenon, is also observed

    Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    Get PDF
    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described

    Geometric integration on spheres and some interesting applications

    Get PDF
    Geometric integration theory can be employed when numerically solving ODEs or PDEs with constraints. In this paper, we present several one-step algorithms of various orders for ODEs on a collection of spheres. To demonstrate the versatility of these algorithms, we present representative calculations for reduced free rigid body motion (a conservative ODE) and a discretization of micromagnetics (a dissipative PDE). We emphasize the role of isotropy in geometric integration and link numerical integration schemes to modern differential geometry through the use of partial connection forms; this theoretical framework generalizes moving frames and connections on principal bundles to manifolds with nonfree actions.Comment: This paper appeared in prin
    • …
    corecore