18 research outputs found

    A Many-Core Overlay for High-Performance Embedded Computing on FPGAs

    Get PDF
    In this work, we propose a configurable many-core overlay for high-performance embedded computing. The size of internal memory, supported operations and number of ports can be configured independently for each core of the overlay. The overlay was evaluated with matrix multiplication, LU decomposition and Fast-Fourier Transform (FFT) on a ZYNQ-7020 FPGA platform. The results show that using a system-level many-core overlay avoids complex hardware design and still provides good performance results.Comment: Presented at First International Workshop on FPGAs for Software Programmers (FSP 2014) (arXiv:1408.4423

    高電力効率プロセッサのためのキャッシュの設計最適化

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 中村 宏, 東京大学教授 原 辰次, 東京大学教授 石川 正俊, 東京大学准教授 近藤 正章, 東京大学准教授 品川 高廣, 東京大学准教授 入江 英嗣University of Tokyo(東京大学

    CAD Tools for Synthesis of Sleep Convention Logic

    Get PDF
    This dissertation proposes an automated flow for the Sleep Convention Logic (SCL) asynchronous design style. The proposed flow synthesizes synchronous RTL into an SCL netlist. The flow utilizes commercial design tools, while supplementing missing functionality using custom tools. A method for determining the performance bottleneck in an SCL design is proposed. A constraint-driven method to increase the performance of linear SCL pipelines is proposed. Several enhancements to SCL are proposed, including techniques to reduce the number of registers and total sleep capacitance in an SCL design

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version

    Architectural Exploration of KeyRing Self-Timed Processors

    Get PDF
    RÉSUMÉ Les dernières décennies ont vu l’augmentation des performances des processeurs contraintes par les limites imposées par la consommation d’énergie des systèmes électroniques : des très basses consommations requises pour les objets connectés, aux budgets de dépenses électriques des serveurs, en passant par les limitations thermiques et la durée de vie des batteries des appareils mobiles. Cette forte demande en processeurs efficients en énergie, couplée avec les limitations de la réduction d’échelle des transistors—qui ne permet plus d’améliorer les performances à densité de puissance constante—, conduit les concepteurs de circuits intégrés à explorer de nouvelles microarchitectures permettant d’obtenir de meilleures performances pour un budget énergétique donné. Cette thèse s’inscrit dans cette tendance en proposant une nouvelle microarchitecture de processeur, appelée KeyRing, conçue avec l’intention de réduire la consommation d’énergie des processeurs. La fréquence d’opération des transistors dans les circuits intégrés est proportionnelle à leur consommation dynamique d’énergie. Par conséquent, les techniques de conception permettant de réduire dynamiquement le nombre de transistors en opération sont très largement adoptées pour améliorer l’efficience énergétique des processeurs. La technique de clock-gating est particulièrement usitée dans les circuits synchrones, car elle réduit l’impact de l’horloge globale, qui est la principale source d’activité. La microarchitecture KeyRing présentée dans cette thèse utilise une méthode de synchronisation décentralisée et asynchrone pour réduire l’activité des circuits. Elle est dérivée du processeur AnARM, un processeur développé par Octasic sur la base d’une microarchitecture asynchrone ad hoc. Bien qu’il soit plus efficient en énergie que des alternatives synchrones, le AnARM est essentiellement incompatible avec les méthodes de synthèse et d’analyse temporelle statique standards. De plus, sa technique de conception ad hoc ne s’inscrit que partiellement dans les paradigmes de conceptions asynchrones. Cette thèse propose une approche rigoureuse pour définir les principes généraux de cette technique de conception ad hoc, en faisant levier sur la littérature asynchrone. La microarchitecture KeyRing qui en résulte est développée en association avec une méthode de conception automatisée, qui permet de s’affranchir des incompatibilités natives existant entre les outils de conception et les systèmes asynchrones. La méthode proposée permet de pleinement mettre à profit les flots de conception standards de l’industrie microélectronique pour réaliser la synthèse et la vérification des circuits KeyRing. Cette thèse propose également des protocoles expérimentaux, dont le but est de renforcer la relation de causalité entre la microarchitecture KeyRing et une réduction de la consommation énergétique des processeurs, comparativement à des alternatives synchrones équivalentes.----------ABSTRACT Over the last years, microprocessors have had to increase their performances while keeping their power envelope within tight bounds, as dictated by the needs of various markets: from the ultra-low power requirements of the IoT, to the electrical power consumption budget in enterprise servers, by way of passive cooling and day-long battery life in mobile devices. This high demand for power-efficient processors, coupled with the limitations of technology scaling—which no longer provides improved performances at constant power densities—, is leading designers to explore new microarchitectures with the goal of pulling more performances out of a fixed power budget. This work enters into this trend by proposing a new processor microarchitecture, called KeyRing, having a low-power design intent. The switching activity of integrated circuits—i.e. transistors switching on and off—directly affects their dynamic power consumption. Circuit-level design techniques such as clock-gating are widely adopted as they dramatically reduce the impact of the global clock in synchronous circuits, which constitutes the main source of switching activity. The KeyRing microarchitecture presented in this work uses an asynchronous clocking scheme that relies on decentralized synchronization mechanisms to reduce the switching activity of circuits. It is derived from the AnARM, a power-efficient ARM processor developed by Octasic using an ad hoc asynchronous microarchitecture. Although it delivers better power-efficiency than synchronous alternatives, it is for the most part incompatible with standard timing-driven synthesis and Static Timing Analysis (STA). In addition, its design style does not fit well within the existing asynchronous design paradigms. This work lays the foundations for a more rigorous definition of this rather unorthodox design style, using circuits and methods coming from the asynchronous literature. The resulting KeyRing microarchitecture is developed in combination with Electronic Design Automation (EDA) methods that alleviate incompatibility issues related to ad hoc clocking, enabling timing-driven optimizations and verifications of KeyRing circuits using industry-standard design flows. In addition to bridging the gap with standard design practices, this work also proposes comprehensive experimental protocols that aims to strengthen the causal relation between the reported asynchronous microarchitecture and a reduced power consumption compared with synchronous alternatives. The main achievement of this work is a framework that enables the architectural exploration of circuits using the KeyRing microarchitecture

    Variable-width datapath for on-chip network static power reduction

    Full text link

    Predicting power scalability in a reconfigurable platform

    Get PDF
    This thesis focuses on the evolution of digital hardware systems. A reconfigurable platform is proposed and analysed based on thin-body, fully-depleted silicon-on-insulator Schottky-barrier transistors with metal gates and silicide source/drain (TBFDSBSOI). These offer the potential for simplified processing that will allow them to reach ultimate nanoscale gate dimensions. Technology CAD was used to show that the threshold voltage in TBFDSBSOI devices will be controllable by gate potentials that scale down with the channel dimensions while remaining within appropriate gate reliability limits. SPICE simulations determined that the magnitude of the threshold shift predicted by TCAD software would be sufficient to control the logic configuration of a simple, regular array of these TBFDSBSOI transistors as well as to constrain its overall subthreshold power growth. Using these devices, a reconfigurable platform is proposed based on a regular 6-input, 6-output NOR LUT block in which the logic and configuration functions of the array are mapped onto separate gates of the double-gate device. A new analytic model of the relationship between power (P), area (A) and performance (T) has been developed based on a simple VLSI complexity metric of the form ATσ = constant. As σ defines the performance “return” gained as a result of an increase in area, it also represents a bound on the architectural options available in power-scalable digital systems. This analytic model was used to determine that simple computing functions mapped to the reconfigurable platform will exhibit continuous power-area-performance scaling behavior. A number of simple arithmetic circuits were mapped to the array and their delay and subthreshold leakage analysed over a representative range of supply and threshold voltages, thus determining a worse-case range for the device/circuit-level parameters of the model. Finally, an architectural simulation was built in VHDL-AMS. The frequency scaling described by σ, combined with the device/circuit-level parameters predicts the overall power and performance scaling of parallel architectures mapped to the array
    corecore