412 research outputs found

    Fast Packet Processing on High Performance Architectures

    Get PDF
    The rapid growth of Internet and the fast emergence of new network applications have brought great challenges and complex issues in deploying high-speed and QoS guaranteed IP network. For this reason packet classication and network intrusion detection have assumed a key role in modern communication networks in order to provide Qos and security. In this thesis we describe a number of the most advanced solutions to these tasks. We introduce NetFPGA and Network Processors as reference platforms both for the design and the implementation of the solutions and algorithms described in this thesis. The rise in links capacity reduces the time available to network devices for packet processing. For this reason, we show different solutions which, either by heuristic and randomization or by smart construction of state machine, allow IP lookup, packet classification and deep packet inspection to be fast in real devices based on high speed platforms such as NetFPGA or Network Processors

    Cryptography for Ultra-Low Power Devices

    Get PDF
    Ubiquitous computing describes the notion that computing devices will be everywhere: clothing, walls and floors of buildings, cars, forests, deserts, etc. Ubiquitous computing is becoming a reality: RFIDs are currently being introduced into the supply chain. Wireless distributed sensor networks (WSN) are already being used to monitor wildlife and to track military targets. Many more applications are being envisioned. For most of these applications some level of security is of utmost importance. Common to WSN and RFIDs are their severely limited power resources, which classify them as ultra-low power devices. Early sensor nodes used simple 8-bit microprocessors to implement basic communication, sensing and computing services. Security was an afterthought. The main power consumer is the RF-transceiver, or radio for short. In the past years specialized hardware for low-data rate and low-power radios has been developed. The new bottleneck are security services which employ computationally intensive cryptographic operations. Customized hardware implementations hold the promise of enabling security for severely power constrained devices. Most research groups are concerned with developing secure wireless communication protocols, others with designing efficient software implementations of cryptographic algorithms. There has not been a comprehensive study on hardware implementations of cryptographic algorithms tailored for ultra-low power applications. The goal of this dissertation is to develop a suite of cryptographic functions for authentication, encryption and integrity that is specifically fashioned to the needs of ultra-low power devices. This dissertation gives an introduction to the specific problems that security engineers face when they try to solve the seemingly contradictory challenge of providing lightweight cryptographic services that can perform on ultra-low power devices and shows an overview of our current work and its future direction

    Hardware Acceleration of Network Intrusion Detection System Using FPGA

    Get PDF
    This thesis presents new algorithms and hardware designs for Signature-based Network Intrusion Detection System (SB-NIDS) optimisation exploiting a hybrid hardwaresoftware co-designed embedded processing platform. The work describe concentrates on optimisation of a complete SB-NIDS Snort application software on a FPGA based hardware-software target rather than on the implementation of a single functional unit for hardware acceleration. Pattern Matching Hardware Accelerator (PMHA) based on Bloom filter was designed to optimise SB-NIDS performance for execution on a Xilinx MicroBlaze soft-core processor. The Bloom filter approach enables the potentially large number of network intrusion attack patterns to be efficiently represented and searched primarily using accesses to FPGA on-chip memory. The thesis demonstrates, the viability of hybrid hardware-software co-designed approach for SB-NIDS. Future work is required to investigate the effects of later generation FPGA technology and multi-core processors in order to clearly prove the benefits over conventional processor platforms for SB-NIDS. The strengths and weaknesses of the hardware accelerators and algorithms are analysed, and experimental results are examined to determine the effectiveness of the implementation. Experimental results confirm that the PMHA is capable of performing network packet analysis for gigabit rate network traffic. Experimental test results indicate that our SB-NIDS prototype implementation on relatively low clock rate embedded processing platform performance is approximately 1.7 times better than Snort executing on a general purpose processor on PC when comparing processor cycles rather than wall clock time

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Real-Time High-Resolution Multiple-Camera Depth Map Estimation Hardware and Its Applications

    Get PDF
    Depth information is used in a variety of 3D based signal processing applications such as autonomous navigation of robots and driving systems, object detection and tracking, computer games, 3D television, and free view-point synthesis. These applications require high accuracy and speed performances for depth estimation. Depth maps can be generated using disparity estimation methods, which are obtained from stereo matching between multiple images. The computational complexity of disparity estimation algorithms and the need of large size and bandwidth for the external and internal memory make the real-time processing of disparity estimation challenging, especially for high resolution images. This thesis proposes a high-resolution high-quality multiple-camera depth map estimation hardware. The proposed hardware is verified in real-time with a complete system from the initial image capture to the display and applications. The details of the complete system are presented. The proposed binocular and trinocular adaptive window size disparity estimation algorithms are carefully designed to be suitable to real-time hardware implementation by allowing efficient parallel and local processing while providing high-quality results. The proposed binocular and trinocular disparity estimation hardware implementations can process 55 frames per second on a Virtex-7 FPGA at a 1024 x 768 XGA video resolution for a 128 pixel disparity range. The proposed binocular disparity estimation hardware provides best quality compared to existing real-time high-resolution disparity estimation hardware implementations. A novel compressed-look up table based rectification algorithm and its real-time hardware implementation are presented. The low-complexity decompression process of the rectification hardware utilizes a negligible amount of LUT and DFF resources of the FPGA while it does not require the existence of external memory. The first real-time high-resolution free viewpoint synthesis hardware utilizing three-camera disparity estimation is presented. The proposed hardware generates high-quality free viewpoint video in real-time for any horizontally aligned arbitrary camera positioned between the leftmost and rightmost physical cameras. The full embedded system of the depth estimation is explained. The presented embedded system transfers disparity results together with synchronized RGB pixels to the PC for application development. Several real-time applications are developed on a PC using the obtained RGB+D results. The implemented depth estimation based real-time software applications are: depth based image thresholding, speed and distance measurement, head-hands-shoulders tracking, virtual mouse using hand tracking and face tracking integrated with free viewpoint synthesis. The proposed binocular disparity estimation hardware is implemented in an ASIC. The ASIC implementation of disparity estimation imposes additional constraints with respect to the FPGA implementation. These restrictions, their implemented efficient solutions and the ASIC implementation results are presented. In addition, a very high-resolution (82.3 MP) 360°x90° omnidirectional multiple camera system is proposed. The hemispherical camera system is able to view the target locations close to horizontal plane with more than two cameras. Therefore, it can be used in high-resolution 360° depth map estimation and its applications in the future
    • …
    corecore