44,252 research outputs found

    A feedback-directed method of evolutionary test data generation for parallel programs

    Get PDF
    Context: Genetic algorithms can be utilized for automatic test data generation. Test data are encoded as individuals which are evolved for a number of generations using genetic operators. Test data of a parallel program include not only the program input, but also the communication information between each pair of processes. Traditional genetic algorithms, however, do not make full use of information provided by a population’s evolution, resulting in a low efficiency in generating test data. Objective: This paper emphasizes the problem of test data generation for parallel programs, and presents a feedback-directed genetic algorithm for generating test data of path coverage. Method: Information related to a schedule sequence is exploited to improve genetic operators. Specifically, a scheduling sequence is evaluated according to how well an individual covers the target path. The probability of the crossover and mutation points being located in the region is determined based on the evaluation result, which prevents a good schedule sequence from being destroyed. If crossover and mutation are performed in the scheduling sequence, the location of crossover and mutation points is further determined according to the relationship between nodes to be covered and the scheduling sequence. In this way, the population can be evolved in a narrowed search space. Results: The proposed algorithm is applied to test 11 parallel programs. The experimental results show that, compared with the genetic algorithm without utilizing information during the population evolution, the proposed algorithm significantly reduces the number of generations and the time consumption. Conclusion: The proposed algorithm can greatly improve the efficiency in evolutionary test data generation

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems
    • …
    corecore