112 research outputs found

    Recent Developments of Photovoltaics Integrated with Battery Storage Systems and Related Feed-In Tariff Policies: A Review

    Get PDF
    The paper presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs) and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece; the attention of this paper is focused on those integrated systems subject to incentivisation policies such as feed-in tariff. Most of the contributions reported in this paper consider already existing incentive schemes; the remaining part of the contributions proposes interesting and novel feed-in tariff schemes. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities. Recent incentive policies adopted in Germany, Italy, Spain, and Australia are also discussed

    Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization

    Get PDF
    In recent decades, investing in renewable and eco-friendly energy technologies, such as replacing clean energy systems instead of traditional ones and equipment management, is an interesting and practical topic in all sectors. This research analyzes the optimization of a hydro plant, wind turbines, and photovoltaic (PV) panels with a careful examination of three scenarios in the Hinnoya region, Norway. Three consumption scenarios—including an industrial/domestic load scenario, transportation load, and household load alone—for this region are considered. HOMER software is used to simulate and analyze the techno-economic performance of solar panels/wind turbines/grid/batteries and converters. The results of this research show that using renewable and eco-friendly systems in accordance with the region's potential leads to a lower cost of electricity generation. The COE production is at least 50% less than the normal sales price of the electricity grid. The use of electric grid exchanges results in energy modification at night. The potential for the use of onshore wind turbines is more than offshore turbines. The results also indicate that using renewable systems in the household field can reduce the COE by nearly 70% (0.0296 €/kWh), and in other energy fields (transportation and industrial) can diminish the COE by nearly 50% (0.055 €/kWh). Thus, increasing the percentage of employing renewable and eco-friendly energy systems leads to reduce greenhouse gas (GHG) emissions (particularly carbon dioxide)

    Use, Operation and Maintenance of Renewable Energy Systems:Experiences and Future Approaches

    Get PDF
    The aim of this book is to put the reader in contact with real experiences, current and future trends in the context of the use, exploitation and maintenance of renewable energy systems around the world. Today the constant increase of production plants of renewable energy is guided by important social, economical, environmental and technical considerations. The substitution of traditional methods of energy production is a challenge in the current context. New strategies of exploitation, new uses of energy and new maintenance procedures are emerging naturally as isolated actions for solving the integration of these new aspects in the current systems of energy production. This book puts together different experiences in order to be a valuable instrument of reference to take into account when a system of renewable energy production is in operation

    Renewable Energy, Fall/Winter 2011, Issue 23

    Get PDF

    Economics of Electricity Battery Storage

    Get PDF
    This chapter deals with the challenges and opportunities of energy storage, with a specific focus on the economics of batteries for storing electricity in the framework of the current energy transition. Storage technologies include a variety of solutions that have been used for different grid services, including frequency control, load following, and uninterrupted power supply. A recent interest is being triggered by the increasing grid balance requirements to integrate variable renewable sources and distributed generation. In parallel, lithium-ion batteries are experiencing a strong market expansion driven by an uptake of electric vehicles worldwide, which is leading to a strong decrease of production costs, making Li-ion batteries an attractive solution also for stationary storage applications

    The Palgrave Handbook of International Energy Economics

    Get PDF
    This open access handbook is distinguished by its emphasis on international energy, rather than domestic energy policies or international geopolitic aspects. Addressing key topics such as energy production and distribution, renewables and corporate energy structures, alongside global energy trends, regional case studies and emerging areas such as the digitalization of energy and energy transition, this handbook provides a major new contribution to the field of international energy economics. Written by academics, practitioners and policy-makers, this handbook is a valuable and timely addition to the literature on international energy economics. This book was published open access with the support of Eni

    Micro Perspectives for Decentralized Energy Supply : Proceedings of the International Conference at Technische Universität Berlin, 7th-8th of April 2011

    Get PDF
    Zugleich gedruckt erschienen im Universitätsverlag der TU Berlin unter der ISBN 978-3-7983-2319-3.Diese Publikation enthält die eingereichten Veröffentlichungen für die Internationale Konferenz "Micro Perspektives for Decentralized Energy Supply" am 7. und 8. April 2011 an der Technischen Universität Berlin. Gedruckte Version im Universitätsverlag der TU Berlin (www.univerlag.tu-berlin.de) erschienen, ISBN 3-978-7983-2319-3This publication presents the papers of the International Conference "Micro Perspectives for Decentralized Energy Supply" on 7th and 8th of April, Technische Universität Berlin. Printed Version published by Universitätsverlag der TU Berlin (www.univerlag.tu-berlin.de), ISBN 978-3-7983-2319-

    Renewable and Sustainable Energy: Current State and Prospects

    Get PDF
    The renewable energy sector is one of the fastest growing branches of the economy in the world, including in Poland. Extensive investigation in research centers results in the increased efficiency of obtaining energy from renewable sources, as well as a decrease in the prices of renewable energy installations. The development of renewable energy motivates further research and the development of new technologies. Investments in renewable energy may also benefit the local community by increasing the attractiveness of the region to tourists, creating opportunities for professional activation (especially in areas with high unemployment), increasing the competitiveness of the local economy and its energy efficiency and obtaining raw materials from local producers, mainly farmers, which are an additional source of income for them. Another possible economic advantage is charging lease fees, for instance, for land under wind turbines or fees for ground easement, in order to ensure access to the construction of power lines, e.g., connecting turbines to the grid; lowering heat prices for residents of a given town; building investment plots in or near heat plants and biogas plants, with the provision of heat and electricity at competitive prices directly from these plants; investors covering the costs of modernizing local roads; and creating new transmission, power lines and supply points

    Developing Models Using Game Theory for Analyzing the Interaction of Various Stakeholders in Energy Systems

    Get PDF
    Air pollution, global warming, climate change, and economic development are all reasons for governments around the world to incentivize the development of renewable energy generation technologies and plan for a transition toward a low-carbon economy. The development of renewable energy projects as well as the liberation in electricity systems has led to the emergence of multiple stakeholders in energy systems. While the research focused on investigating the objective of a single stakeholder in an energy system is abundant in the literature, considering the objectives of all stakeholders in a multi-stakeholder model is a gap in the research. This thesis is aimed at developing a multilevel framework for modeling and analyzing the interaction of various stakeholders in energy systems. The models developed in this thesis are focused on investigating two areas: 1. The role of energy storage systems in Ontario and how they can be used to reduce GHG emissions in the province, and 2. Analyzing the interaction of the heat and electricity supply systems in Great Britain. The contribution of this thesis is presented through four studies. The objective of the first study is to investigate the effect and cost-efficiency of different renewable energy incentives and potential for wind and hydrogen energy systems to the perceived viability of a microgrid project from the prospective of different stakeholders, i.e., government, energy hub operator and energy consumer in the province of Ontario, Canada. Hourly simulation of a microgrid in which wind and/or hydrogen are produced is used for the analysis. Results show that using underground seasonal storage leads to the government paying less incentive per kg of CO2 emission reduction as it lowers the levelized cost of hydrogen and provides a higher carbon emission reduction potential. Results of the first study also show that for the same incentive policy, incentivizing hydrogen production with grid electricity or a blend of wind power and grid electricity and producing hydrogen using wind power with underground hydrogen storage are more cost-efficient options for government than incentivizing wind power production. Regarding the renewable energy incentives, a combination of capital grant and FIT is shown to be a more cost-efficient incentive program for the government than FIT only programs. However, FIT programs are more effective for promoting the development of renewable energy technologies. In the second study, the advantages of energy incentives for all the stakeholders in an energy system were analyzed in the context of a microgrid using a more comprehensive approach. In the second study, the effect of health impacts from fossil fuel consumption and taxes collected from the energy hub operator and energy consumer are considered in the model. The stakeholders considered in the second study include the government, the energy hub operator, and the energy consumer. Two streams of energy incentives were compared in the second study: incentives for renewable energy generation technologies and incentives for energy storage technologies. The first stream aims to increase the share of renewable energies in the electricity system while the second stream aims the development of systems which use clean electricity to replace fossil fuels in other sectors of an energy system such as the transportation, residential and industrial sectors. The results of the analysis in the second study show that replacing fossil fuel-based electricity generation with wind and solar power is a less expensive way for the energy consumer to reduce GHG emissions (60 and 92 CAD per tonne of CO2e for wind and solar, respectively) compared to investing on energy storage technologies (225 and 317 CAD per tonne of CO2e for Power-to-Gas and battery-powered forklifts, respectively). However, considering the current Ontario's electricity mix, incentives for the Power-to-Gas and battery-powered technologies are less expensive ways to reduce emissions compared to replacing the grid with wind and solar power technologies (1479 and 2418 CAD per tonne of CO2e for wind and solar, respectively). The analysis in the second study also shows that battery storage and hydrogen storage are complementary technologies for reducing GHG emissions in Ontario. This third study aims at developing a game theory model for assessing the potential of fuel cell-powered and battery-powered forklifts for reducing GHG emissions in the province of Ontario, Canada. Two stakeholders are considered in the developed model: government and energy consumer, which is an industrial facility operating forklifts. The energy consumer, which is assumed to be an industrial facility, operates 150 diesel forklifts but has the option of replacing them with fuel cell-powered and battery-powered forklifts. The government can encourage this replacement by allocating a percentage of Ontario's surplus power to the energy consumer at a discounted price. The discount is assumed to be in the form of exempting the energy consumer from paying the global adjustment. As a result, the energy consumer only pays the hourly Ontario electricity price when discounted power is available. Discounted electricity will decrease the cost of operating battery-powered and fuel cell-powered forklifts for the energy consumer and will encourage the use of those technologies instead of diesel forklifts. The government has an incentive to pursue such policy as the replacement of diesel forklifts with fuel cell-powered and battery-powered forklifts will reduce GHG emissions and subsequently, the social cost of carbon in the province. The results of the third study show that when the government does not allocate discounted power to the energy consumer, energy consumer does not reduce emissions and keeps using the 150 diesel forklifts. However, when the government provides 0.1% of Ontario's surplus power at each hour to the energy consumer at a discounted price, the energy consumer replaces 31 of diesel forklifts with battery-powered forklifts. When the percentage of discounted power is 0.6% of Ontario's surplus power at each hour, energy consumer replaces 91 of diesel forklifts with battery-powered forklifts and 54 of diesel forklifts with fuel cell-powered forklifts. A policy of discounting surplus power to encourage replacing diesel forklifts with battery-powered and fuel cell-powered forklifts is shown to benefit both stakeholders in the system. The third study also shows that the deployment of both fuel-cell powered and battery-powered forklifts is effective in reducing GHG emissions in Ontario when surplus clean power is available. Battery-powered forklifts are more cost-effective when lower levels of discounted power are available; however, with an increase in the level of available discounted power, fuel cell-powered forklifts become more cost-effective technologies compared to battery-powered forklifts. The same methodology is also used for analyzing the potential of clean surplus power in Ontario to reduce GHG emissions in the residential sector. In the fourth study, an iterative optimization model is developed to analyze the interaction of heat and electricity sectors at a national level in Great Britain. Independent mathematical models for optimizing the selection of technologies in heat and electricity supply systems are developed in the fourth study. The optimal mix of technologies for supplying electricity and heat were then calculated iteratively to take into account the interactions between the electricity and heat systems and their fragmented planning strategies. The capacity and operation of various technologies for electricity generation were optimized to supply electricity demand with a minimum annual cost. Then, the heat supply options were determined through minimization of the annualized cost of the heat supply system. Iterative optimization of electricity and heat was continued until an equilibrium was achieved. The results of the iterative approach were compared with a centralized optimization model in which heat and electricity problems are solved simultaneously

    A User-Centred Methodology to Design and Simulate Smart Home Environments and Related Services

    Get PDF
    openI progressi nelle tecnologie di automazione e comunicazione all'interno degli edifici residenziali offrono molti interessanti vantaggi per lo sviluppo delle Smart Home, come l'aumento di efficienza energetica, il miglioramento il comfort per gli abitanti e la riduzione dei costi operativi per il proprietario. L'aggregazione e la condivisione dei dati all'interno delle reti possono essere garantite dal moderno approccio denominato Internet delle cose (IoT) e supportati dalle nuove tecnologie dell'informazione e della comunicazione (ICT). Tali tecnologie si stanno evolvendo e le abitazioni stanno diventando luoghi tecnologici popolati da una moltitudine di dispositivi in grado di raccogliere una grande quantità di dati e di cooperare in modo intelligente per controllare tutti i dispositivi connessi, come gli elettrodomestici, l'illuminazione, i sistemi di riscaldamento, ecc. Da un lato, l’intelligenza crescente dei dispositivi connessi produce una grande quantità di dati; dall'altro lato, la complessità di tali dati crea difficoltà di classificazione, trasmissione ed interpretazione delle informazioni utili. Entrambi gli aspetti possono ridurre drasticamente i potenziali vantaggi e limitare la diffusione dei cosiddetti dispositivi “smart”. Mentre a livello aziendale già esistono soluzioni di automazione affermate ed ampiamente utilizzate, le applicazioni per le abitazioni private sono ancora di difficile diffusione a causa della mancanza di standard di comunicazione e della presenza di dispositivi e sistemi altamente eterogenei e quindi di difficile integrazione. Inoltre, anche quando la connessione tra due dispositivi viene stabilita, renderli interoperabili è un’altra grande sfida a causa delle differenze nelle modalità di funzionamento e della difficoltà di integrazione dell'interfaccia. Infatti, le Smart Home non consentono ancora una elevata interoperabilità e gli studi fatti sono spesso fortemente orientati alla tecnologia e concentrati sulle potenzialità dei singoli sottosistemi, trascurando i benefici per gli utenti finali. A tale scopo, questo lavoro definisce un modello di gestione delle informazioni per ambienti domestici intelligenti con lo scopo di supportare la progettazione e la simulazione dei dispositivi “smart” nonché dei servizi sviluppati. Tale modello considera diverse tipologie di dispositivi, le relazioni esistenti tra loro, i flussi informativi e le modalità di interazione dell’utente per modellare correttamente l'ambiente e definirne il comportamento. Il modello sviluppato supporta la progettazione della Smart Home ed è in grado di simulare le funzionalità dei dispositivi con lo scopo finale di valutare i benefici dei servizi forniti.The advances in home automation and communication technologies offer several attractive benefits for the modern smart home, such as increased energy efficiency, improved residential comfort and reduced operative costs for the homeowner. Data aggregation and sharing within the networks can be guaranteed by modern Internet of Things (IoT) approaches and supported by available Information and Communication Technologies (ICT) tools. Such technologies are evolving and the private houses are becoming technological places populated by a multitude of devices able to collect a huge quantity of data and to cooperate in an intelligent way to control different domains, from household appliances to lighting or heating and ventilation. On one hand, the rising intelligence of smart devices makes a large amount of data available; on the other hand, data complexity creates difficulties in classifying, transmitting and interpreting essential data. Both aspects may drastically reduce the potential advantages and limit the diffusion smart devices. While in building automation proven solutions already exist, tailored applications for private houses and integration among heterogeneous devices and systems are still challenging due to the lack of standards and the variety of adopted communication protocols and data model schemas. Furthermore, even when the device connection and consolidation are achieved, making them cooperate in an interoperable way is another big challenge due to differences in usage paradigms, operation modes and interface integration. In fact, Smart Homes still lack of high interoperability and researches are often strongly technology-oriented and focused on single sub-system potentialities neglecting the expected benefits for the final users. For this purpose, the presented research defines an information management model for the smart home environment to support design and simulation of its devices as well as the enabled services. Such a model considers different device typologies, their mutual relationships, the information flows and the user interaction modalities in order to properly model the environment and define its behavior. It supports the design of the smart home by simulating the devices’ functionalities and estimating the expected performances.INGEGNERIA MECCANICA E GESTIONALEopenCapitanelli, AndreaCapitanelli, Andre
    corecore