24 research outputs found

    Efficient and Featureless Approaches to Bathymetric Simultaneous Localisation and Mapping

    Get PDF
    This thesis investigates efficient forms of Simultaneous Localization and Mapping (SLAM) that do not require explicit identification, tracking or association of map features. The specific application considered here is subsea robotic bathymetric mapping. In this context, SLAM allows a GPS-denied robot operating near the sea floor to create a self-consistent bathymetric map. This is accomplished using a Rao-Blackwellized Particle Filter (RBPF) whereby each particle maintains a hypothesis of the current vehicle state and map that is efficiently maintained using Distributed Particle Mapping. Through particle weighting and resampling, successive observations of the seafloor structure are used to improve the estimated trajectory and resulting map by enforcing map self consistency. The main contributions of this thesis are two novel map representations, either of which can be paired with the RBPF to perform SLAM. The first is a grid-based 2D depth map that is efficiently stored by exploiting redundancies between different maps. The second is a trajectory map representation that, instead of directly storing estimates of seabed depth, records the trajectory of each particle and synchronises it to a common log of bathymetric observations. Upon detecting a loop closure each particle is weighted by matching new observations to the current predictions. For the grid map approach this is done by extracting the predictions stored in the observed cells. For the trajectory map approach predictions are instead generated from a local reconstruction of their map using Gaussian Process Regression. While the former allows for faster map access the latter requires less memory and fully exploits the spatial correlation in the environment, allowing predictions of seabed depth to be generated in areas that were not directly observed previously. In this case particle resampling therefore not only enforces self-consistency in overlapping sections of the map but additionally enforces self-consistency between neighboring map borders. Both approaches are validated using multibeam sonar data collected from several missions of varying scale by a variety of different Unmanned Underwater Vehicles. These trials demonstrate how the corrections provided by both approaches improve the trajectory and map when compared to dead reckoning fused with Ultra Short Baseline or Long Baseline observations. Furthermore, results are compared with a pre-existing state of the art bathymetric SLAM technique, confirming that similar results can be achieved at a fraction of the computation cost. Lastly the added capabilities of the trajectory map are validated using two different bathymetric datasets. These demonstrate how navigation and mapping corrections can still be achieved when only sparse bathymetry is available (e.g. from a four beam Doppler Velocity Log sensor) or in missions where map overlap is minimal or even non-existent

    underwater SLAM: Challenges, state of the art, algorithms and a new biologically-inspired approach

    Get PDF
    Abstract-The unstructured scenario, the extraction of significant features, the imprecision of sensors along with the impossibility of using GPS signals are some of the challenges encountered in underwater environments. Given this adverse context, the Simultaneous Localization and Mapping techniques (SLAM) attempt to localize the robot in an efficient way in an unknown underwater environment while, at the same time, generate a representative model of the environment. In this paper, we focus on key topics related to SLAM applications in underwater environments. Moreover, a review of major studies in the literature and proposed solutions for addressing the problem are presented. Given the limitations of probabilistic approaches, a new alternative based on a bio-inspired model is highlighted

    Self consistent bathymetric mapping from robotic vehicles in the deep ocean

    Get PDF
    Submitted In partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution June 2005Obtaining accurate and repeatable navigation for robotic vehicles in the deep ocean is difficult and consequently a limiting factor when constructing vehicle-based bathymetric maps. This thesis presents a methodology to produce self-consistent maps and simultaneously improve vehicle position estimation by exploiting accurate local navigation and utilizing terrain relative measurements. It is common for errors in the vehicle position estimate to far exceed the errors associated with the acoustic range sensor. This disparity creates inconsistency when an area is imaged multiple times and causes artifacts that distort map integrity. Our technique utilizes small terrain "submaps" that can be pairwise registered and used to additionally constrain the vehicle position estimates in accordance with actual bottom topography. A delayed state Kalman filter is used to incorporate these sub-map registrations as relative position measurements between previously visited vehicle locations. The archiving of previous positions in a filter state vector allows for continual adjustment of the sub-map locations. The terrain registration is accomplished using a two dimensional correlation and a six degree of freedom point cloud alignment method tailored for bathymetric data. The complete bathymetric map is then created from the union of all sub-maps that have been aligned in a consistent manner. Experimental results from the fully automated processing of a multibeam survey over the TAG hydrothermal structure at the Mid-Atlantic ridge are presented to validate the proposed method.This work was funded by the CenSSIS ERC of the Nation Science Foundation under grant EEC-9986821 and in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation

    Localization Algorithms for GNSS-denied and Challenging Environments

    Get PDF
    In this dissertation, the problem about localization in GNSS-denied and challenging environments is addressed. Specifically, the challenging environments discussed in this dissertation include two different types, environments including only low-resolution features and environments containing moving objects. To achieve accurate pose estimates, the errors are always bounded through matching observations from sensors with surrounding environments. These challenging environments, unfortunately, would bring troubles into matching related methods, such as fingerprint matching, and ICP. For instance, in environments with low-resolution features, the on-board sensor measurements could match to multiple positions on a map, which creates ambiguity; in environments with moving objects included, the accuracy of the estimated localization is affected by the moving objects when performing matching. In this dissertation, two sensor fusion based strategies are proposed to solve localization problems with respect to these two types of challenging environments, respectively. For environments with only low-resolution features, such as flying over sea or desert, a multi-agent localization algorithm using pairwise communication with ranging and magnetic anomaly measurements is proposed in this dissertation. A scalable framework is then presented to extend the multi-agent localization algorithm to be suitable for a large group of agents (e.g., 128 agents) through applying CI algorithm. The simulation results show that the proposed algorithm is able to deal with large group sizes, achieve 10 meters level localization performance with 180 km traveling distance, while under restrictive communication constraints. For environments including moving objects, lidar-inertial-based solutions are proposed and tested in this dissertation. Inspired by the CI algorithm presented above, a potential solution using multiple features motions estimate and tracking is analyzed. In order to improve the performance and effectiveness of the potential solution, a lidar-inertial based SLAM algorithm is then proposed. In this method, an efficient tightly-coupled iterated Kalman filter with a build-in dynamic object filter is designed as the front-end of the SLAM algorithm, and the factor graph strategy using a scan context technology as the loop closure detection is utilized as the back-end. The performance of the proposed lidar-inertial based SLAM algorithm is evaluated with several data sets collected in environments including moving objects, and compared with the state-of-the-art lidar-inertial based SLAM algorithms

    Underwater localization using imaging sonars in 3D environments

    Get PDF
    This work proposes a localization method using a mechanically scanned imaging sonar (MSIS), which stands out by its low cost and weight. The proposed method implements a Particle Filter, a Bayesian Estimator, and introduces a measurement model based on sonar simulation theory. To the best of author’s knowledge, there is no similar approach in the literature, as sonar simulation current methods target in syntethic data generation, mostly for object recognition . This stands as the major contribution of the thesis as allows the introduction of the computation of intensity values provided by imaging sonars, while maitaining compability with the already used methods, such as range extraction. Simulations shows the efficiency of the method as well its viability to the utilization of imaging sonar in underwater localization. The new approach make possible, under certain constraints, the extraction of 3D information from a sensor considered, in the literature, as 2D and also in situations where there is no reference at the same horizontal plane of the sensor transducer scanning axis. The localization in complex 3D environment is also an advantage provided by the proposed method.Este trabalho propõe um método de localização utilizando um sonar do tipo MSIS (Mechanically Scanned Imaging Sonar ), o qual se destaca por seu baixo custo e peso. O método implementa um filtro de partículas, um estimador Bayesiano, e introduz um modelo de medição baseado na teoria de simulação de sonares. No conhecimento do autor não há uma abordagem similar na literatura, uma vez que os métodos atuais de simulação de sonar visam a geração de dados sintéticos para o reconhecimento de objetos. Esta é a maior contribuição da tese pois permite a a computação dos valores de intensidade fornecidos pelos sonares do tipo imaging e ao mesmo tempo é compatível com os métodos já utilizados, como extração de distância. Simulações mostram o bom desempenho do método, assim como sua viabilidade para o uso de imaging sonars na localização submarina. A nova abordagem tornou possível, sob certas restrições, a extração de informações 3D de um sensor considerado, na literatura, como somente 2D e também em situações em que não há nehnuma referência no mesmo plano horizontal do eixo de escaneamento do transdutor. A localização em ambientes 3D complexos é também uma vantagem proporcionada pelo método proposto

    Cooperative bathymetry-based localization using low-cost autonomous underwater vehicles

    Get PDF
    We present a cooperative bathymetry-based localization approach for a team of low-cost autonomous underwater vehicles (AUVs), each equipped only with a single-beam altimeter, a depth sensor and an acoustic modem. The localization of the individual AUV is achieved via fully decentralized particle filtering, with the local filter’s measurement model driven by the AUV’s altimeter measurements and ranging information obtained through inter-vehicle communication. We perform empirical analysis on the factors that affect the filter performance. Simulation studies using randomly generated trajectories as well as trajectories executed by the AUVs during field experiments successfully demonstrate the feasibility of the technique. The proposed cooperative localization technique has the potential to prolong AUV mission time, and thus open the door for long-term autonomy underwater.Massachusetts Institute of Technology. Department of Mechanical EngineeringSingapore-MIT Alliance for Research and Technology (SMART) (Graduate Fellowship

    Dense, sonar-based reconstruction of underwater scenes

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.Three-dimensional maps of underwater scenes are critical to—or the desired end product of—many applications, spanning a spectrum of spatial scales. Examples range from inspection of subsea infrastructure to hydrographic surveys of coastlines. Depending on the end use, maps will have different accuracy requirements. The accuracy of a mapping platform depends mainly on the individual accuracies of (i) its pose estimate in some global frame, (ii) the estimates of offsets between mapping sensors and platform, and (iii) the accuracy of the mapping sensor measurements. Typically, surface-based surveying platforms will employ highly accurate positioning sensors—e.g. a combination of differential global navigation satellite system (GNSS) receiver with an accurate attitude and heading reference system—to instrument the pose of a mapping sensor such as a multibeam sonar. For underwater platforms, the rapid attenuation of electromagnetic signals in water precludes the use of GNSS receivers at any meaningful depth. Acoustic positioning systems, the underwater analogues to GNSS, are limited to small survey areas and free of obstacles that may result in undesirable acoustic effects such as multi-path propagation and reverberation. Save for a few exceptions, the accuracy and update rate of these systems is significantly lower than that of differential GNSS. This performance reduction shifts the accuracy burden to inertial navigation systems (INS), often aided by Doppler velocity logs. Still, the pose estimates of an aided INS will incur in unbounded drift growth over time, often necessitating the use of techniques such as simultaneous localization and mapping (SLAM) to leverage local features to bound the uncertainty in the position estimate. The contributions presented in this dissertation aim at improving the accuracy of maps of underwater scenes produced from multibeam sonar data. First, we propose robust methods to process and segment sonar data to obtain accurate range measurements in the presence of noise, sensor artifacts, and outliers. Second, we propose a volumetric, submap-based SLAM technique that can successfully leverage map information to correct for drift in the mapping platform’s pose estimate. Third, and informed by the previous two contributions, we propose a dense approach to the sonar-based reconstruction problem, in which the pose estimation, sonar segmentation and model optimization problems are tackled simultaneously under the unified framework of factor graphs. This stands in contrast with the traditional approach where the sensor processing and segmentation, pose estimation, and model reconstruction problems are solved independently. Finally, we provide experimental results obtained over several deployments of a commercial inspection platform that validate the proposed techniques.This work was generously supported by the Office of Naval Research1, the MIT-Portugal Program, and the Schlumberger Technology Corporation

    An Overview of Autonomous Underwater Vehicle Research and Testbed at PeRL

    Full text link
    This article provides a general overview of the autonomous underwater vehicle (AUV) research thrusts being pursued within the Perceptual Robotics Laboratory (PeRL) at the University of Michigan. Founded in 2007, PeRL’s research centers on improving AUV autonomy via algorithmic advancements in environmentally-based perceptual feedback for real-time mapping, navigation, and control. Our three major research areas are: (1) real-time visual simultaneous localization and mapping (SLAM); (2) cooperative multi-vehicle navigation; and (3) perception-driven control. Pursuant to these research objectives PeRL has developed a new multi-AUV SLAM testbed based upon a modified Ocean-Server Iver2 AUV platform. PeRL upgraded the vehicles with additional navigation and perceptual sensors for underwater SLAM research. In this article we detail our testbed development, provide an overview of our major research thrusts, and put into context how our modified AUV testbed enables experimental real-world validation of these algorithms.This work is supported in part through grants from the National Science Foundation (Award #IIS 0746455), the Office of Naval Research (Award #N00014-07-1-0791), and a NOAA Ocean Exploration grant (Award #WC133C08SE4089).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64455/1/hbrown-2009a.pd

    Towards a robust slam framework for resilient AUV navigation

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are playing an increasing part in modern navies, to the point that the control of oceans will soon be decided by their strategic use. In face of more complex missions occurring in potentially hostile environments, the resilience of such systems becomes critical. In this study, we investigate the following scenario: how does a lone AUV could recover from a temporary breakdown that has created a gap in its measurements, while remaining beneath the surface to avoid detection? It is assumed that the AUV is equipped with an active sonar and is operating in an uncharted area. The vehicle has to rely on itself by recovering its location using a Simultaneous Localization and Mapping (SLAM) algorithm. While SLAM is widely investigated and developed in the case of aerial and terrestrial robotics, the nature of the poorly structured underwater environment dramatically challenges its effectiveness. To address such a complex problem, the usual side scan sonar data association techniques are investigated under a global registration problem while applying robust graph SLAM modelling. In particular, ways to improve the global detection of features from sonar mosaic region patches that react well to the MICR similarity measure are discussed. The main contribution of this study is centered on a novel data processing framework that is able to generate different graph topologies using robust SLAM techniques. One of its advantages is to facilitate the testing of different modelling hypotheses to tackle the data gap following the temporary breakdown and make the most of the limited available information. Several research perspectives related to this framework are discussed. Notably, the possibility to further extend the proposed framework to heterogeneous datasets and the opportunity to accelerate the recovery process by inferring information about the breakdown using machine learning.PH
    corecore