7,582 research outputs found

    Machine learning based lightweight interference mitigation scheme for wireless sensor network

    Get PDF
    The interference issue is most vibrant on low-powered networks like wireless sensor network (WSN). In some cases, the heavy interference on WSN from different technologies and devices result in life threatening situations. In this paper, a machine learning (ML) based lightweight interference mitigation scheme for WSN is proposed. The scheme detects and identifies heterogeneous interference like Wifi, bluetooth and microwave oven using a lightweight feature extraction method and ML lightweight decision tree. It also provides WSN an adaptive interference mitigation solution by helping to choose packet scheduling, Acknowledgement (ACK)-retransmission or channel switching as the best countermeasure. The scheme is simulated with test data to evaluate the accuracy performance and the memory consumption. Evaluation of the proposed scheme’s memory profile shows a 14% memory saving compared to a fast fourier transform (FFT) based periodicity estimation technique and 3% less memory compared to logistic regression-based ML model, hence proving the scheme is lightweight. The validation test shows the scheme has a high accuracy at 95.24%. It shows a precision of 100% in detecting WiFi and microwave oven interference while a 90% precision in detecting bluetooth interference

    Distributed Anomaly Detection using Autoencoder Neural Networks in WSN for IoT

    Full text link
    Wireless sensor networks (WSN) are fundamental to the Internet of Things (IoT) by bridging the gap between the physical and the cyber worlds. Anomaly detection is a critical task in this context as it is responsible for identifying various events of interests such as equipment faults and undiscovered phenomena. However, this task is challenging because of the elusive nature of anomalies and the volatility of the ambient environments. In a resource-scarce setting like WSN, this challenge is further elevated and weakens the suitability of many existing solutions. In this paper, for the first time, we introduce autoencoder neural networks into WSN to solve the anomaly detection problem. We design a two-part algorithm that resides on sensors and the IoT cloud respectively, such that (i) anomalies can be detected at sensors in a fully distributed manner without the need for communicating with any other sensors or the cloud, and (ii) the relatively more computation-intensive learning task can be handled by the cloud with a much lower (and configurable) frequency. In addition to the minimal communication overhead, the computational load on sensors is also very low (of polynomial complexity) and readily affordable by most COTS sensors. Using a real WSN indoor testbed and sensor data collected over 4 consecutive months, we demonstrate via experiments that our proposed autoencoder-based anomaly detection mechanism achieves high detection accuracy and low false alarm rate. It is also able to adapt to unforeseeable and new changes in a non-stationary environment, thanks to the unsupervised learning feature of our chosen autoencoder neural networks.Comment: 6 pages, 7 figures, IEEE ICC 201

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    A Systematic Approach to Constructing Families of Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    In the communication systems domain, constructing and maintaining network topologies via topology control (TC) algorithms is an important cross-cutting research area. Network topologies are usually modeled using attributed graphs whose nodes and edges represent the network nodes and their interconnecting links. A key requirement of TC algorithms is to fulfill certain consistency and optimization properties to ensure a high quality of service. Still, few attempts have been made to constructively integrate these properties into the development process of TC algorithms. Furthermore, even though many TC algorithms share substantial parts (such as structural patterns or tie-breaking strategies), few works constructively leverage these commonalities and differences of TC algorithms systematically. In previous work, we addressed the constructive integration of consistency properties into the development process. We outlined a constructive, model-driven methodology for designing individual TC algorithms. Valid and high-quality topologies are characterized using declarative graph constraints; TC algorithms are specified using programmed graph transformation. We applied a well-known static analysis technique to refine a given TC algorithm in a way that the resulting algorithm preserves the specified graph constraints. In this paper, we extend our constructive methodology by generalizing it to support the specification of families of TC algorithms. To show the feasibility of our approach, we reneging six existing TC algorithms and develop e-kTC, a novel energy-efficient variant of the TC algorithm kTC. Finally, we evaluate a subset of the specified TC algorithms using a new tool integration of the graph transformation tool eMoflon and the Simonstrator network simulation framework.Comment: Corresponds to the accepted manuscrip

    A Survey of Access Control Models in Wireless Sensor Networks

    Get PDF
    Copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.Peer reviewe
    • …
    corecore