16,123 research outputs found

    What Works Better? A Study of Classifying Requirements

    Full text link
    Classifying requirements into functional requirements (FR) and non-functional ones (NFR) is an important task in requirements engineering. However, automated classification of requirements written in natural language is not straightforward, due to the variability of natural language and the absence of a controlled vocabulary. This paper investigates how automated classification of requirements into FR and NFR can be improved and how well several machine learning approaches work in this context. We contribute an approach for preprocessing requirements that standardizes and normalizes requirements before applying classification algorithms. Further, we report on how well several existing machine learning methods perform for automated classification of NFRs into sub-categories such as usability, availability, or performance. Our study is performed on 625 requirements provided by the OpenScience tera-PROMISE repository. We found that our preprocessing improved the performance of an existing classification method. We further found significant differences in the performance of approaches such as Latent Dirichlet Allocation, Biterm Topic Modeling, or Naive Bayes for the sub-classification of NFRs.Comment: 7 pages, the 25th IEEE International Conference on Requirements Engineering (RE'17

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy
    • …
    corecore