151 research outputs found

    Integrated inpection of sculptured surface products using machine vision and a coordinate measuring machine

    Get PDF
    In modem manufacturing technology with increasing automation of manufacturing processes and operations, the need for automated measurement has become much more apparent. Computer measuring machines are one of the essential instruments for quality control and measurement of complex products, performing measurements that were previously laborious and time consuming. Inspection of sculptured surfaces can be time consuming since, for exact specification, an almost infinite number of points would be required. Automated measurement with a significant reduction of inspected points can be attempted if prior knowledge of the part shape is available. The use of a vision system can help to identify product shape and features but, unfortunately, the accuracy required is often insufficient. In this work a vision system used with a Coordinate Measuring Machine (CMM), incorporating probing, has enabled fast and accurate measurements to be obtained. The part features have been enhanced by surface marking and a simple 2-D vision system has been utilised to identify part features. In order to accurately identify all parts of the product using the 2-D vision system, a multiple image superposition method has been developed which enables 100 per cent identification of surface features. A method has been developed to generate approximate 3-D surface position from prior knowledge of the product shape. A probing strategy has been developed which selects correct probe angle for optimum accuracy and access, together with methods and software for automated CMM code generation. This has enabled accurate measurement of product features with considerable reductions in inspection time. Several strategies for the determination and assessment of feature position errors have been investigated and a method using a 3-D least squares assessment has been found to be satisfactory. A graphical representation of the product model and errors has been developed using a 3-D solid modelling CAD system. The work has used golf balls and tooling as the product example

    User defined feature modelling: representing extrinsic form, dimensions and tolerances

    Get PDF

    A feature-based approach to the Computer-Aided Design of sculptured products

    Get PDF
    Computer-Aided Design systems offer considerable potential for improving design process efficiency. To reduce the 'ease of use' barrier hindering full realisation of this potential amongst general mechanical engineering industries, many commercial systems are adopting a Feature-Based Design (FBD) metaphor. Typically the user is allowed to define and manipulate the design model using interface elements that introduce and control parametric geometry clusters, with engineering meaning, representing specific product features (such as threaded holes, slots, pockets and bosses). Sculptured products, such as golf club heads, shoe lasts, crockery and sanitary ware, are poorly supported by current FBD systems and previous research, because their complex shapes cannot be accurately defined using the geometrically primitive feature sets implemented. Where sculptured surface regions are allowed for, the system interface, data model and functionality are little different from that already provided in many commercial surface modelling systems, and so offer very little improvement in ease of use, quality or efficiency. This thesis presents research to propose and develop an FBD methodology and system suitable for sculptured products. [Continues.

    Topological model for machining of parts with complex shapes

    Get PDF
    Complex shapes are widely used to design products in several industries such as aeronautics, automotive and domestic appliances. Several variations of their curvatures and orientations generate difficulties during their manufacturing or the machining of dies used in moulding, injection and forging. Analysis of several parts highlights two levels of difficulties between three types of shapes: prismatic parts with simple geometrical shapes, aeronautic structure parts composed of several shallow pockets and forging dies composed of several deep cavities which often contain protrusions. This paper mainly concerns High Speed Machining (HSM) of these dies which represent the highest complexity level because of the shapes' geometry and their topology. Five axes HSM is generally required for such complex shaped parts but 3 axes machining can be sufficient for dies. Evolutions in HSM CAM software and machine tools lead to an important increase in time for machining preparation. Analysis stages of the CAD model particularly induce this time increase which is required for a wise choice of cutting tools and machining strategies. Assistance modules for prismatic parts machining features identification in CAD models are widely implemented in CAM software. In spite of the last CAM evolutions, these kinds of CAM modules are undeveloped for aeronautical structure parts and forging dies. Development of new CAM modules for the extraction of relevant machining areas as well as the definition of the topological relations between these areas must make it possible for the machining assistant to reduce the machining preparation time. In this paper, a model developed for the description of complex shape parts topology is presented. It is based on machining areas extracted for the construction of geometrical features starting from CAD models of the parts. As topology is described in order to assist machining assistant during machining process generation, the difficulties associated with tasks he carried out are analyzed at first. The topological model presented after is based on the basic geometrical features extracted. Topological relations which represent the framework of the model are defined between the basic geometrical features which are gathered afterwards in macro-features. Approach used for the identification of these macro-features is also presented in this paper. Detailed application on the construction of the topological model of forging dies is presented in the last part of the paper

    Process capability modelling: a review report of feature representation methodologies

    Get PDF
    Approximately 150 technical papers on the features methodology have been carefully studied and some selected papers have been commented upon. The abstracts of the comments are documented and attached to this report. The methodologies reviewed are mainly divided into two approaches, ie. feature recognition and design by features. Papers which deal with some specific topics such as feature taxonomies, dimensions and tolerances, feature concepts, etc. are also included in the document

    Toolpath verification using set-theoretic solid modelling

    Get PDF

    Feature-based representation for assembly modelling

    Get PDF
    The need for a product model which can support the modelling requirements of a broad range of applications leads to the application of a feature-based model. An important requirement in feature-based design and manufacture is that a single feature representation should be capable of supporting a number of different applications. The capability of representing products composed of assemblies is seen to be necessary to serve the information needs of those applications. To achieve this aim it is an essential prerequisite to develop a formal structure for the representation of assembly information in a feature-based design system. This research addresses two basic questions related to the lack of a unified definition for features and the problem of representing assemblies in a feature-based representation. The intention is to extend the concept of designing with features by incorporating assembly information in addition to the geometrical and topological details of component parts. This allows models to be assembled using the assembly information within the feature definitions. Features in this research are defined as machined volumes which are represented in a hierarchical taxonomy. The taxonomy includes several types and profiles of features which cover a general range of machined parts. A hierarchical assembly structure is also defined in which features form basic entities in the assembly. Each feature includes information needed to establish assembly relationships among features in the form of mating relationships. An analysis of typical assemblies shows that assembly interfaces occur at the face level of the mating features and between features themselves. Three mating relationships between pairs of features have been defined (against, fits and align) and are represented in the form of expressions that can be used for evaluations. Various sub-types of these major mating relationships can be identified (e.g. tight fit, clearance fit, etc.) and represented through the use of qualifying attributes. Component Relation Graphs, Feature Relation Graphs and Face Mating Graphs have been developed to represent each level of interaction in an assembly, and assembly relationships are combined with knowledge on process planning into a Component Connectivity Graph. These graphs are used as the basis for deriving an integrated data structure which is used for defining classes for each level in the assembly hierarchy. The implementation of a prototype system has been facilitated by use of an object-oriented programming technique which provides a natural method of adding functionality to the geometric reasoning process of features and the complex relationships between the parts that make up the assembly. The feature-based model is embedded in an object-oriented solid modeller kernel, ACIS®. The research demonstrates the possibilities for a single feature representation to support multiple activities within a computer integrated manufacturing environment. Such a representation can form the basis of design improvement techniques and manufacturing planning as well as be a model to support the life cycle of the product

    Geometric reasoning for process planning

    Get PDF

    PDC Drill Bit Design Improvement using Reverse Engineering Method to Analyze Effect on Rate of Penetration

    Get PDF
    In the petroleum industry, drilling is one of the most important aspects due to the economics. Reduction in drilling time is required to minimize the cost of operations. This study focuses on the Polycrystalline Diamond Compact (PDC) drill bit which is categorized as fixed cutter of drilling bit. Problem such as wear and tear of PDC cutter is one of the main factor in drilling process failure and this would affect the rate of penetration. Thus, an intensive study in drill bit design would save a lot of money if the efficiency of drill bit can be improved. The objective of this project is to improve the design of PDC cutter and study the effect of design improvement to the rate of penetration. Reverse engineering (RE) method will be used to study the design and analyse the effect of the design to performance of the drill bit. Due to unavailable drill bit blueprint from the manufacturer due to propriety and confidential, RE non-contact data acquisition device, 3D laser scanner will be used to obtain cloud data of worn drill bit. Computer Aided Design (CAD) software is used to convert cloud data of the PDC drill bit into 3D CAD model. Optimization of PDC Drill bit is focused on feature design such as back rake angle, side rake angle and number of cutters. CAE software is used to analyse the effect of the design feature modification to rate of penetration. The results show rate of penetration increase as the angle of both rake angle and number of cutter decrease

    Feature-based validation reasoning for intent-driven engineering design

    Get PDF
    Feature based modelling represents the future of CAD systems. However, operations such as modelling and editing can corrupt the validity of a feature-based model representation. Feature interactions are a consequence of feature operations and the existence of a number of features in the same model. Feature interaction affects not only the solid representation of the part, but also the functional intentions embedded within features. A technique is thus required to assess the integrity of a feature-based model from various perspectives, including the functional intentional one, and this technique must take into account the problems brought about by feature interactions and operations. The understanding, reasoning and resolution of invalid feature-based models requires an understanding of the feature interaction phenomena, as well as the characterisation of these functional intentions. A system capable of such assessment is called a feature-based representation validation system. This research studies feature interaction phenomena and feature-based designer's intents as a medium to achieve a feature-based representation validation system. [Continues.
    corecore