49,807 research outputs found

    Improve Sofa Assembly through Automation and Redesign of the Processes

    Get PDF
    Projecte fet en col.laboració amb Lund University. Department of Design Sciences.English: To redesign the current assembly process of the Ektorp Sofa from IKEA in order to improve cycle times, quality levels and to reduce, if possible, costs associated with manufacturing, production times and materials. IKEA wants to increase either the productivity or the quality standard of the Ektorp Sofa by simplifying the processes involved in the construction of the sofa and modernizing the production line. Method: By identifying problems and challenges for automation associated to the current design of the sofa. Proposing new design for the base frame and designing a respective assembly line for each solution. Subsequently a simulation for each assembly line is done using Tecnomatix. Finally all the results obtained from each solution are analyzed, compared and discussed. Conclusions: After a deep analysis of the sofa, it has been stated that the current design has too many pieces that require a high number of operations to assemble it. Moreover, it uses a huge amount of glue and staples. Different solutions have been presented to improve the design. Additionally, two new base frame designs have been presented simplifying the structure, reducing the number of pieces, the necessary assembly operations and avoiding the use of glue or staples. The current assembly process has also been redesigned in an automated assembly line layout and it has been proved through simulation that the new line is faster than the current one. Moving the process to a line arrangement has also increased the quality of the final product as the operations in every stage are simplified and automated

    Making Name-Based Content Routing More Efficient than Link-State Routing

    Full text link
    The Diffusive Name-based Routing Protocol (DNRP) is introduced for efficient name-based routing in information-centric networks (ICN). DNRP establishes and maintains multiple loop-free routes to the nearest instances of a name prefix using only distance information. DNRP eliminates the need for periodic updates, maintaining topology information, storing complete paths to content replicas, or knowing about all the sites storing replicas of named content. DNRP is suitable for large ICNs with large numbers of prefixes stored at multiple sites. It is shown that DNRP provides loop-free routes to content independently of the state of the topology and that it converges within a finite time to correct routes to name prefixes after arbitrary changes in the network topology or the placement of prefix instances. The result of simulation experiments illustrates that DNRP is more efficient than link-state routing approaches

    Assessment of the Accuracy of a Multi-Beam LED Scanner Sensor for Measuring Olive Canopies

    Get PDF
    MDPI. CC BYCanopy characterization has become important when trying to optimize any kind of agricultural operation in high-growing crops, such as olive. Many sensors and techniques have reported satisfactory results in these approaches and in this work a 2D laser scanner was explored for measuring canopy trees in real-time conditions. The sensor was tested in both laboratory and field conditions to check its accuracy, its cone width, and its ability to characterize olive canopies in situ. The sensor was mounted on a mast and tested in laboratory conditions to check: (i) its accuracy at different measurement distances; (ii) its measurement cone width with different reflectivity targets; and (iii) the influence of the target’s density on its accuracy. The field tests involved both isolated and hedgerow orchards, in which the measurements were taken manually and with the sensor. The canopy volume was estimated with a methodology consisting of revolving or extruding the canopy contour. The sensor showed high accuracy in the laboratory test, except for the measurements performed at 1.0 m distance, with 60 mm error (6%). Otherwise, error remained below 20 mm (1% relative error). The cone width depended on the target reflectivity. The accuracy decreased with the target density

    Automated seed manipulation and planting

    Get PDF
    The Mechanical Division fabricated three seed separators utilizing pressure gradients to move and separate wheat seeds. These separators are called minnow buckets and use air, water, or a combination of both to generate the pressure gradient. Electrostatic fields were employed in the seed separator constructed by the Electrical Division. This separator operates by forcing a temporary electric dipole on the wheat seeds and using charged electrodes to attract and move the seeds. Seed delivery to the hydroponic growth tray is accomplished by the seed cassette. The cassette is compatible with all the seed separators, and it consists of a plastic tube threaded with millipore filter paper. During planting operations, the seeds are placed in an empty cassette. The loaded cassette is then placed in the growth tray and nutrient solution provided. The solution wets the filter paper and capillary action draws the nutrients up to feed the seeds. These seeding systems were tested and showed encouraging results. Seeds were effectively separated and the cassette can support the growth of wheat plants. Problems remaining to be investigated include improving the success of delivering the seeds to the cassette and providing adequate spacing between seeds for the electric separator

    Conventional Industrial Robotics Applied to the Process of Tomato Grafting Using the Splicing Technique

    Get PDF
    Horticultural grafting is routinely performed manually, demanding a high degree of concentration and requiring operators to withstand extreme humidity and temperature conditions. This article presents the results derived from adapting the splicing technique for tomato grafting, characterized by the coordinated work of two conventional anthropomorphic industrial robots with the support of low-cost passive auxiliary units for the transportation, handling, and conditioning of the seedlings. This work provides a new approach to improve the efficiency of tomato grafting. Six test rates were analyzed, which allowed the system to be evaluated across 900 grafted units, with gradual increases in the speed of robots work, operating from 80 grafts/hour to over 300 grafts/hour. The results obtained show that a higher number of grafts per hour than the number manually performed by skilled workers could be reached easily, with success rates of approximately 90% for working speeds around 210–240 grafts/hour

    High capacity demonstration of honeycomb panel heat pipes

    Get PDF
    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance

    Aggregate assembly process planning for concurrent engineering

    Get PDF
    In today's consumer and economic climate, manufacturers are finding it increasingly difficult to produce finished products with increased functionality whilst fulfilling the aesthetic requirements of the consumer. To remain competitive, manufacturers must always look for ways to meet the faster, better, and cheaper mantra of today's economy. The ability for any industry to mirror the ideal world, where the design, manufacturing, and assembly process of a product would be perfected before it is put mto production, will undoubtedly save a great deal of time and money. This thesis introduces the concept of aggregate assembly process planning for the conceptual stages of design, with the aim of providing the methodology behind such an environment. The methodology is based on an aggregate product model and a connectivity model. Together, they encompass all the requirements needed to fully describe a product in terms of its assembly processes, providing a suitable means for generating assembly sequences. Two general-purpose heuristics methods namely, simulated annealing and genetic algorithms are used for the optimisation of assembly sequences generated, and the loading of the optimal assembly sequences on to workstations, generating an optimal assembly process plan for any given product. The main novelty of this work is in the mapping of the optimisation methods to the issue of assembly sequence generation and line balancing. This includes the formulation of the objective functions for optimismg assembly sequences and resource loading. Also novel to this work is the derivation of standard part assembly methodologies, used to establish and estimate functional tunes for standard assembly operations. The method is demonstrated using CAPABLEAssembly; a suite of interlinked modules that generates a pool of optimised assembly process plans using the concepts above. A total of nine industrial products have been modelled, four of which are the conceptual product models. The process plans generated to date have been tested on industrial assembly lines and in some cases yield an increase in the production rate
    corecore