14,610 research outputs found

    Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Full text link
    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.Comment: 28 pages, Published 21 April 2015 at MDPI's journal "Sensors

    Stochastic Sensor Scheduling via Distributed Convex Optimization

    Full text link
    In this paper, we propose a stochastic scheduling strategy for estimating the states of N discrete-time linear time invariant (DTLTI) dynamic systems, where only one system can be observed by the sensor at each time instant due to practical resource constraints. The idea of our stochastic strategy is that a system is randomly selected for observation at each time instant according to a pre-assigned probability distribution. We aim to find the optimal pre-assigned probability in order to minimize the maximal estimate error covariance among dynamic systems. We first show that under mild conditions, the stochastic scheduling problem gives an upper bound on the performance of the optimal sensor selection problem, notoriously difficult to solve. We next relax the stochastic scheduling problem into a tractable suboptimal quasi-convex form. We then show that the new problem can be decomposed into coupled small convex optimization problems, and it can be solved in a distributed fashion. Finally, for scheduling implementation, we propose centralized and distributed deterministic scheduling strategies based on the optimal stochastic solution and provide simulation examples.Comment: Proof errors and typos are fixed. One section is removed from last versio
    • …
    corecore