428 research outputs found

    Run-time management of many-core SoCs: A communication-centric approach

    Get PDF
    The single core performance hit the power and complexity limits in the beginning of this century, moving the industry towards the design of multi- and many-core system-on-chips (SoCs). The on-chip communication between the cores plays a criticalrole in the performance of these SoCs, with power dissipation, communication latency, scalability to many cores, and reliability against the transistor failures as the main design challenges. Accordingly, we dedicate this thesis to the communicationcentered management of the many-core SoCs, with the goal to advance the state-ofthe-art in addressing these challenges. To this end, we contribute to on-chip communication of many-core SoCs in three main directions. First, we start with a synthesizable SoC with full system simulation. We demonstrate the importance of the networking overhead in a practical system, and propose our sophisticated network interface (NI) that offloads the work from SW to HW. Our results show around 5x and up to 50x higher network performance, compared to previous works. As the second direction of this thesis, we study the significance of run-time application mapping. We demonstrate that contiguous application mapping not only improves the network latency (by 23%) and power dissipation (by 50%), but also improves the system throughput (by 3%) and quality-of-service (QoS) of soft real-time applications (up to 100x less deadline misses). Also our hierarchical run-time application mapping provides 99.41% successful mapping when up to 8 links are broken. As the final direction of the thesis, we propose a fault-tolerant routing algorithm, the maze-routing. It is the first-in-class algorithm that provides guaranteed delivery, a fully-distributed solution, low area overhead (by 16x), and instantaneous reconfiguration (vs. 40K cycles down time of previous works), all at the same time. Besides the individual goals of each contribution, when applicable, we ensure that our solutions scale to extreme network sizes like 12x12 and 16x16. This thesis concludes that the communication overhead and its optimization play a significant role in the performance of many-core SoC

    Classification of networks-on-chip in the context of analysis of promising self-organizing routing algorithms

    Full text link
    This paper contains a detailed analysis of the current state of the network-on-chip (NoC) research field, based on which the authors propose the new NoC classification that is more complete in comparison with previous ones. The state of the domain associated with wireless NoC is investigated, as the transition to these NoCs reduces latency. There is an assumption that routing algorithms from classical network theory may demonstrate high performance. So, in this article, the possibility of the usage of self-organizing algorithms in a wireless NoC is also provided. This approach has a lot of advantages described in the paper. The results of the research can be useful for developers and NoC manufacturers as specific recommendations, algorithms, programs, and models for the organization of the production and technological process.Comment: 10 p., 5 fig. Oral presentation on APSSE 2021 conferenc

    Fault-tolerant networks-on-chip routing with coarse and fine-grained look-ahead

    Get PDF
    Fault tolerance and adaptive capabilities are challenges for modern networks-on-chip (NoC) due to the increase in physical defects in advanced manufacturing processes. Two novel adaptive routing algorithms, namely coarse and fine-grained (FG) look-ahead algorithms, are proposed in this paper to enhance 2-D mesh/torus NoC system fault-tolerant capabilities. These strategies use fault flag codes from neighboring nodes to obtain the status or conditions of real-time traffic in an NoC region, then calculate the path weights and choose the route to forward packets. This approach enables the router to minimize congestion for the adjacent connected channels and also to bypass a path with faulty channels by looking ahead at distant neighboring router paths. The novelty of the proposed routing algorithms is the weighted path selection strategies, which make near-optimal routing decisions to maintain the NoC system performance under high fault rates. Results show that the proposed routing algorithms can achieve performance improvement compared to other state of the art works under various traffic loads and high fault rates. The routing algorithm with FG look-ahead capability achieves a higher throughput compared with the coarse-grained approach under complex fault patterns. The hardware area/power overheads of both routing approaches are relatively low which does not prohibit scalability for large-scale NoC implementations

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    Networks on Chips: Structure and Design Methodologies

    Get PDF

    Tree-structured small-world connected wireless network-on-chip with adaptive routing

    Get PDF
    Traditional Network-on-Chip (NoC) systems comprised of many cores suffer from debilitating bottlenecks of latency and significant power dissipation due to the overhead inherent in multi-hop communication. In addition, these systems remain vulnerable to malicious circuitry incorporated into the design by untrustworthy vendors in a world where complex multi-stage design and manufacturing processes require the collective specialized services of a variety of contractors. This thesis proposes a novel small-world tree-based network-on-chip (SWTNoC) structure designed for high throughput, acceptable energy consumption, and resiliency to attacks and node failures resulting from the insertion of hardware Trojans. This tree-based implementation was devised as a means of reducing average network hop count, providing a large degree of local connectivity, and effective long-range connectivity by means of a novel wireless link approach based on carbon nanotube (CNT) antenna design. Network resiliency is achieved by means of a devised adaptive routing algorithm implemented to work with TRAIN (Tree-based Routing Architecture for Irregular Networks). Comparisons are drawn with benchmark architectures with optimized wireless link placement by means of the simulated annealing (SA) metaheuristic. Experimental results demonstrate a 21% throughput improvement and a 23% reduction in dissipated energy per packet over the closest competing architecture. Similar trends are observed at increasing system sizes. In addition, the SWTNoC maintains this throughput and energy advantage in the presence of a fault introduced into the system. By designing a hierarchical topology and designating a higher level of importance on a subset of the nodes, much higher network throughput can be attained while simultaneously guaranteeing deadlock freedom as well as a high degree of resiliency and fault-tolerance

    Network-on-Chip

    Get PDF
    Limitations of bus-based interconnections related to scalability, latency, bandwidth, and power consumption for supporting the related huge number of on-chip resources result in a communication bottleneck. These challenges can be efficiently addressed with the implementation of a network-on-chip (NoC) system. This book gives a detailed analysis of various on-chip communication architectures and covers different areas of NoCs such as potentials, architecture, technical challenges, optimization, design explorations, and research directions. In addition, it discusses current and future trends that could make an impactful and meaningful contribution to the research and design of on-chip communications and NoC systems
    corecore