268 research outputs found

    Automatic Active Contour Modelling and Its Potential Application for Non-Destructive Testing

    Get PDF
    Active contouring techniques are very useful in medical imaging, digital mapping, non-destructive ultrasonic evaluation, etc. Therefore, we try to explore and investigate the advanced automatic active contouring methods, which can benefit the aforementioned applications. In this thesis work, we study the automatic active contour models adopted for the object characterization, whose extensions could include the potential defect analysis in the ultrasonic non-destructive testing. The active contouring scheme (also called a snake) or an energy minimizing spline, is an algorithm which is very sensitive to the manually marked initial points, and thereby requires an expertly operation. Therefore, we make new research endeavors to handle this major problem and design a new expert-free snake technique, which can lead to the completely automatic contouring technology for the future applications. Even though this initialization problem has been addressed in the literature for quite a while, to the best of our knowledge, there exists no satisfactory solution so far. In this thesis, we propose a novel initialization algorithm for the automatic snake technique, which can possess a faster convergence than other existing automatic contouring methods and also avoid the human operational error incurred in the conventional snake schemes

    Modeling and visualization of medical anesthesiology acts

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaIn recent years, medical visualization has evolved from simple 2D images on a light board to 3D computarized images. This move enabled doctors to find better ways of planning surgery and to diagnose patients. Although there is a great variety of 3D medical imaging software, it falls short when dealing with anesthesiology acts. Very little anaesthesia related work has been done. As a consequence, doctors and medical students have had little support to study the subject of anesthesia in the human body. We all are aware of how costly can be setting medical experiments, covering not just medical aspects but ethical and financial ones as well. With this work we hope to contribute for having better medical visualization tools in the area of anesthesiology. Doctors and in particular medical students should study anesthesiology acts more efficiently. They should be able to identify better locations to administrate the anesthesia, to study how long does it take for the anesthesia to affect patients, to relate the effect on patients with quantity of anaesthesia provided, etc. In this work, we present a medical visualization prototype with three main functionalities: image pre-processing, segmentation and rendering. The image pre-processing is mainly used to remove noise from images, which were obtained via imaging scanners. In the segmentation stage it is possible to identify relevant anatomical structures using proper segmentation algorithms. As a proof of concept, we focus our attention in the lumbosacral region of the human body, with data acquired via MRI scanners. The segmentation we provide relies mostly in two algorithms: region growing and level sets. The outcome of the segmentation implies the creation of a 3D model of the anatomical structure under analysis. As for the rendering, the 3D models are visualized using the marching cubes algorithm. The software we have developed also supports time-dependent data. Hence, we could represent the anesthesia flowing in the human body. Unfortunately, we were not able to obtain such type of data for testing. But we have used human lung data to validate this functionality

    Computer-aided diagnosis of complications of total hip replacement X-ray images

    Get PDF
    Hip replacement surgery has experienced a dramatic evolution in recent years supported by the latest developments in many areas of technology and surgical procedures. Unfortunately complications that follow hip replacement surgery remains the most challenging dilemma faced both by the patients and medical experts. The thesis presents a novel approach to segment the prosthesis of a THR surgical process by using an Active Contour Model (ACM) that is initiated via an automatically detected seed point within the enarthrosis region of the prosthesis. The circular area is detected via the use of a Fast, Randomized Circle Detection Algorithm. Experimental results are provided to compare the performance of the proposed ACM based approach to popular thresholding based approaches. Further an approach to automatically detect the Obturator Foramen using an ACM approach is also presented. Based on analysis of how medical experts carry out the detection of loosening and subsidence of a prosthesis and the presence of infections around the prosthesis area, this thesis presents novel computational analysis concepts to identify the key feature points of the prosthesis that are required to detect all of the above three types of complications. Initially key points along the prosthesis boundary are determined by measuring the curvature on the surface of the prosthesis. By traversing the edge pixels, starting from one end of the boundary of a detected prosthesis, the curvature values are determined and effectively used to determine key points of the prosthesis surface and their relative positioning. After the key-points are detected, pixel value gradients across the boundary of the prosthesis are determined along the boundary of the prosthesis to determine the presence of subsidence, loosening and infections. Experimental results and analysis are presented to show that the presence of subsidence is determined by the identification of dark pixels around the convex bend closest to the stem area of the prosthesis and away from it. The presence of loosening is determined by the additional presence of dark regions just outside the two straight line edges of the stem area of the prosthesis. The presence of infections is represented by the determination of dark areas around the tip of the stem of the prosthesis. All three complications are thus determined by a single process where the detailed analysis defer. The experimental results presented show the effectiveness of all proposed approaches which are also compared and validated against the ground truth recorded manually with expert user input

    Segmentation of candidate bacillus objects in images of Ziehl-Neelsen-stained sputum smears using deformable models

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 83-88).Automated microscopy for the detection of tuberculosis (TB) in sputum smears seeks to address the strain on technicians and to achieve faster diagnosis in order to cope with the rising number of TB cases. Image processing techniques provide a useful alternative to the conventional, manual analysis of sputum smears for diagnosis. In the project described here, the use of parametric and geometric deformable models was explored for segmentation of TB bacilli in images of Ziehl-Neelsen-stained sputum smears for automated TB diagnosis. The goal of segmentation is to produce candidate bacillus objects for input into a classifier

    Experimental investigation of liquid fragmentation in hypersonic cross flow

    Get PDF
    This thesis presents an experimental investigation carried out to study penetration and fragmentation of liquid injected into Mach 6 hypersonic cross flow. Flow topology, shock and vortex systems, fragmentation and atomization mechanisms are investigated using high-speed photography, Schlieren photography, flow visualization and Phase Doppler Interferometry techniques. All experiments are conducted at the H-3 Mach 6 wind tunnel facility of the von Karman Institute. Water is used for all tests. Freestream conditions of air flow are kept constant. The variation of the injector geometry and the effect of momentum flux ratio are studied throughout the experimental campaign. Droplet size measurements are analyzed and treated to characterize the atomization process of the liquid jet. The Sauter Mean Diameter and the standard deviation of the droplet size distribution are calculated and presented as a function of location and momentum flux ratio. The obtained Sauter Mean Diameter distribution is compared with the theory available in the literature for lower cross flow speed cases. The whipping phenomenon observed for the low momentum flux ratio liquid injections is explained by frequency maps, which allow one to see the flow domains with similar frequency content. This analysis proposes that the penetration of liquid jet determines the shape of the bow shock, which determines the location and angle of the separation shock. The separation shock is observed to penetrate into liquid phase, playing an important role in fragmentation of liquid, thus changing the penetration height and the shape of the bow shock. A continuous interaction between the liquid penetration, bow shock, separation shock and liquid fragmentation is believed to be the mechanism responsible of the whipping phenomenon. The fragmentation of liquid exposed to Mach 6 air flow is also investigated. Experiments are conducted using water-filled balloons mounted on sharp and blunt leading edge supports. The water-filled balloons are exposed to Mach 6 air flow and high speed camera measurements are taken during the bursting of the balloon, to study the fragmentation of water. Shock patterns and flow topology are visualized by Schlieren photography

    MPEG-4 content creation: integration of MPEG-4 content creation tools into an existing animation tool

    Get PDF
    This thesis provides a complete framework that enables the creation of photorealistic 3D human models in real-world environments. The approach allows a non-expert user to use any digital capture device to obtain four images of an individual and create a personalised 3D model, for multimedia applications. To achieve this, it is necessary that the system is automatic and that the reconstruction process is flexible to account for information that is not available or incorrectly captured. In this approach the individual is automatically extracted from the environment using constrained active B-spline templates that are scaled and automatically initialised using only image information. These templates incorporate the energy minimising framework for Active Contour Models, providing a suitable and flexible method to deal with the adjustments in pose an individual can adopt. The final states o f the templates describe the individual’s shape. The contours in each view are combined to form a 3D B-spline surface that characterises an individual’s maximal silhouette equivalent. The surface provides a mould that contains sufficient information to allow for the active deformation of an underlying generic human model. This modelling approach is performed using a novel technique that evolves active-meshes to 3D for deforming the underlying human model, while adaptively constraining it to preserve its existing structure. The active-mesh approach incorporates internal constraints that maintain the structural relationship of the vertices of the human model, while external forces deform the model congruous to the 3D surface mould. The strength of the internal constraints can be reduced to allow the model to adopt the exact shape o f the bounding volume or strengthened to preserve the internal structure, particularly in areas of high detail. This novel implementation provides a uniform framework that can be simply and automatically applied to the entire human model
    • …
    corecore