24 research outputs found

    Fast online computation of the Qn estimator with applications to the detection of outliers in data streams

    Get PDF
    We present FQN (Fast Qn), a novel algorithm for online computation of the Qn scale estimator. The algorithm works in the sliding window model, cleverly computing the Qn scale estimator in the current window. We thoroughly compare our algorithm for online Qn with the state of the art competing algorithm by Nunkesser et al., and show that FQN (i) is faster, requiring only O(s) time in the worst case where s is the length of the window (ii) its computational complexity does not depend on the input distribution and (iii) it requires less space. To the best of our knowledge, our algorithm is the first that allows online computation of the Qn scale estimator in worst case time linear in the size of the window. As an example of a possible application, besides its use as a robust measure of statistical dispersion, we show how to use the Qn estimator for fast detection of outliers in data streams. Extensive experimental results on both synthetic and real datasets confirm the validity of our approach

    Communication-Efficient Probabilistic Algorithms: Selection, Sampling, and Checking

    Get PDF
    Diese Dissertation behandelt drei grundlegende Klassen von Problemen in Big-Data-Systemen, für die wir kommunikationseffiziente probabilistische Algorithmen entwickeln. Im ersten Teil betrachten wir verschiedene Selektionsprobleme, im zweiten Teil das Ziehen gewichteter Stichproben (Weighted Sampling) und im dritten Teil die probabilistische Korrektheitsprüfung von Basisoperationen in Big-Data-Frameworks (Checking). Diese Arbeit ist durch einen wachsenden Bedarf an Kommunikationseffizienz motiviert, der daher rührt, dass der auf das Netzwerk und seine Nutzung zurückzuführende Anteil sowohl der Anschaffungskosten als auch des Energieverbrauchs von Supercomputern und der Laufzeit verteilter Anwendungen immer weiter wächst. Überraschend wenige kommunikationseffiziente Algorithmen sind für grundlegende Big-Data-Probleme bekannt. In dieser Arbeit schließen wir einige dieser Lücken. Zunächst betrachten wir verschiedene Selektionsprobleme, beginnend mit der verteilten Version des klassischen Selektionsproblems, d. h. dem Auffinden des Elements von Rang kk in einer großen verteilten Eingabe. Wir zeigen, wie dieses Problem kommunikationseffizient gelöst werden kann, ohne anzunehmen, dass die Elemente der Eingabe zufällig verteilt seien. Hierzu ersetzen wir die Methode zur Pivotwahl in einem schon lange bekannten Algorithmus und zeigen, dass dies hinreichend ist. Anschließend zeigen wir, dass die Selektion aus lokal sortierten Folgen – multisequence selection – wesentlich schneller lösbar ist, wenn der genaue Rang des Ausgabeelements in einem gewissen Bereich variieren darf. Dies benutzen wir anschließend, um eine verteilte Prioritätswarteschlange mit Bulk-Operationen zu konstruieren. Später werden wir diese verwenden, um gewichtete Stichproben aus Datenströmen zu ziehen (Reservoir Sampling). Schließlich betrachten wir das Problem, die global häufigsten Objekte sowie die, deren zugehörige Werte die größten Summen ergeben, mit einem stichprobenbasierten Ansatz zu identifizieren. Im Kapitel über gewichtete Stichproben werden zunächst neue Konstruktionsalgorithmen für eine klassische Datenstruktur für dieses Problem, sogenannte Alias-Tabellen, vorgestellt. Zu Beginn stellen wir den ersten Linearzeit-Konstruktionsalgorithmus für diese Datenstruktur vor, der mit konstant viel Zusatzspeicher auskommt. Anschließend parallelisieren wir diesen Algorithmus für Shared Memory und erhalten so den ersten parallelen Konstruktionsalgorithmus für Aliastabellen. Hiernach zeigen wir, wie das Problem für verteilte Systeme mit einem zweistufigen Algorithmus angegangen werden kann. Anschließend stellen wir einen ausgabesensitiven Algorithmus für gewichtete Stichproben mit Zurücklegen vor. Ausgabesensitiv bedeutet, dass die Laufzeit des Algorithmus sich auf die Anzahl der eindeutigen Elemente in der Ausgabe bezieht und nicht auf die Größe der Stichprobe. Dieser Algorithmus kann sowohl sequentiell als auch auf Shared-Memory-Maschinen und verteilten Systemen eingesetzt werden und ist der erste derartige Algorithmus in allen drei Kategorien. Wir passen ihn anschließend an das Ziehen gewichteter Stichproben ohne Zurücklegen an, indem wir ihn mit einem Schätzer für die Anzahl der eindeutigen Elemente in einer Stichprobe mit Zurücklegen kombinieren. Poisson-Sampling, eine Verallgemeinerung des Bernoulli-Sampling auf gewichtete Elemente, kann auf ganzzahlige Sortierung zurückgeführt werden, und wir zeigen, wie ein bestehender Ansatz parallelisiert werden kann. Für das Sampling aus Datenströmen passen wir einen sequentiellen Algorithmus an und zeigen, wie er in einem Mini-Batch-Modell unter Verwendung unserer im Selektionskapitel eingeführten Bulk-Prioritätswarteschlange parallelisiert werden kann. Das Kapitel endet mit einer ausführlichen Evaluierung unserer Aliastabellen-Konstruktionsalgorithmen, unseres ausgabesensitiven Algorithmus für gewichtete Stichproben mit Zurücklegen und unseres Algorithmus für gewichtetes Reservoir-Sampling. Um die Korrektheit verteilter Algorithmen probabilistisch zu verifizieren, schlagen wir Checker für grundlegende Operationen von Big-Data-Frameworks vor. Wir zeigen, dass die Überprüfung zahlreicher Operationen auf zwei „Kern“-Checker reduziert werden kann, nämlich die Prüfung von Aggregationen und ob eine Folge eine Permutation einer anderen Folge ist. Während mehrere Ansätze für letzteres Problem seit geraumer Zeit bekannt sind und sich auch einfach parallelisieren lassen, ist unser Summenaggregations-Checker eine neuartige Anwendung der gleichen Datenstruktur, die auch zählenden Bloom-Filtern und dem Count-Min-Sketch zugrunde liegt. Wir haben beide Checker in Thrill, einem Big-Data-Framework, implementiert. Experimente mit absichtlich herbeigeführten Fehlern bestätigen die von unserer theoretischen Analyse vorhergesagte Erkennungsgenauigkeit. Dies gilt selbst dann, wenn wir häufig verwendete schnelle Hash-Funktionen mit in der Theorie suboptimalen Eigenschaften verwenden. Skalierungsexperimente auf einem Supercomputer zeigen, dass unsere Checker nur sehr geringen Laufzeit-Overhead haben, welcher im Bereich von 2%2\,\% liegt und dabei die Korrektheit des Ergebnisses nahezu garantiert wird

    Moving-baseline localization for mobile wireless sensor networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.Includes bibliographical references (leaves 93-98).The moving-baseline localization (MBL) problem arises when a group of nodes moves through an environment in which no external coordinate reference is available. When group members cannot see or hear one another directly, each node must employ local sensing and inter-device communication to infer the spatial relationship and motion of all other nodes with respect to itself. We consider a setting in which nodes move with piecewise-linear velocities in the plane, and any node can exchange noisy range estimates with certain sufficiently nearby nodes. We develop a distributed solution to the MBL problem in the plane, in which each node performs robust hyperbola fitting, trilateration with velocity constraints, and subgraph alignment to arrive at a globally consistent view of the network expressed in its own "rest frame." Changes in any node's motion cause deviations between observed and predicted ranges at nearby nodes, triggering revision of the trajectory estimates computed by all nodes. We implement and analyze our algorithm in a simulation informed by the characteristics of a commercially available ultra-wideband (UWB) radio, and show that recovering node trajectories, rather than just locations, requires substantially less computation at each node. Finally, we quantify the minimum ranging rate and local network density required for the method's successful operation.by Jun-geun Park.S.M
    corecore