67 research outputs found

    Graph-based skin lesion segmentation of multispectral dermoscopic images

    No full text
    International audienceAccurate skin lesion segmentation is critical for automated early skin cancer detection and diagnosis. We present a novel method to detect skin lesion borders in multispectral der-moscopy images. First, hairs are detected on infrared images and removed by inpainting visible spectrum images. Second, skin lesion is pre-segmented using a clustering of a superpixel partition. Finally, the pre-segmentation is globally regular-ized at the superpixel level and locally regularized in a narrow band at the pixel level

    Application for light field inpainting

    Get PDF
    Light Field (LF) imaging is a multimedia technology that can provide more immersive experience when visualizing a multimedia content with higher levels of realism compared to conventional imaging technologies. This technology is mainly promising for Virtual Reality (VR) since it displays real-world scenes in a way that users can experience the captured scenes in every position and every angle, due to its 4-dimensional LF representation. For these reasons, LF is a fast-growing technology, with so many topics to explore, being the LF inpainting the one that was explored in this dissertation. Image inpainting is an editing technique that allows synthesizing alternative content to fill in holes in an image. It is commonly used to fill missing parts in a scene and restore damaged images such that the modifications are correct and visually realistic. Applying traditional 2D inpainting techniques straightforwardly to LFs is very unlikely to result in a consistent inpainting in its all 4 dimensions. Usually, to inpaint a 4D LF content, 2D inpainting algorithms are used to inpaint a particular point of view and then 4D inpainting propagation algorithms propagate the inpainted result for the whole 4D LF data. Based on this idea of 4D inpainting propagation, some 4D LF inpainting techniques have been recently proposed in the literature. Therefore, this dissertation proposes to design and implement an LF inpainting application that can be used by the public that desire to work in this field and/or explore and edit LFs.Campos de luz é uma tecnologia multimédia que fornece uma experiência mais imersiva ao visualizar conteúdo multimédia com níveis mais altos de realismo, comparando a tecnologias convencionais de imagem. Esta tecnologia é promissora, principalmente para Realidade Virtual, pois exibe cenas capturadas do mundo real de forma que utilizadores as possam experimentar em todas as posições e ângulos, devido à sua representação em 4 dimensões. Por isso, esta é tecnologia em rápido crescimento, com tantos tópicos para explorar, sendo o inpainting o explorado nesta dissertação. Inpainting de imagens é uma técnica de edição, permitindo sintetizar conteúdo alternativo para preencher lacunas numa imagem. Comumente usado para preencher partes que faltam numa cena e restaurar imagens danificadas, de forma que as modificações sejam corretas e visualmente realistas. É muito improvável que aplicar técnicas tradicionais de inpainting 2D diretamente a campos de luz resulte num inpainting consistente em todas as suas 4 dimensões. Normalmente, para fazer inpainting num conteúdo 4D de campos de luz, os algoritmos de inpainting 2D são usados para fazer inpainting de um ponto de vista específico e, seguidamente, os algoritmos de propagação de inpainting 4D propagam o resultado do inpainting para todos os dados do campo de luz 4D. Com base nessa ideia de propagação de inpainting 4D, algumas técnicas foram recentemente propostas na literatura. Assim, esta dissertação propõe-se a conceber e implementar uma aplicação de inpainting de campos de luz que possa ser utilizada pelo público que pretenda trabalhar nesta área e/ou explorar e editar campos de luz

    Medical image synthesis using generative adversarial networks: towards photo-realistic image synthesis

    Full text link
    This proposed work addresses the photo-realism for synthetic images. We introduced a modified generative adversarial network: StencilGAN. It is a perceptually-aware generative adversarial network that synthesizes images based on overlaid labelled masks. This technique can be a prominent solution for the scarcity of the resources in the healthcare sector

    Persistent Homology Tools for Image Analysis

    Get PDF
    Topological Data Analysis (TDA) is a new field of mathematics emerged rapidly since the first decade of the century from various works of algebraic topology and geometry. The goal of TDA and its main tool of persistent homology (PH) is to provide topological insight into complex and high dimensional datasets. We take this premise onboard to get more topological insight from digital image analysis and quantify tiny low-level distortion that are undetectable except possibly by highly trained persons. Such image distortion could be caused intentionally (e.g. by morphing and steganography) or naturally in abnormal human tissue/organ scan images as a result of onset of cancer or other diseases. The main objective of this thesis is to design new image analysis tools based on persistent homological invariants representing simplicial complexes on sets of pixel landmarks over a sequence of distance resolutions. We first start by proposing innovative automatic techniques to select image pixel landmarks to build a variety of simplicial topologies from a single image. Effectiveness of each image landmark selection demonstrated by testing on different image tampering problems such as morphed face detection, steganalysis and breast tumour detection. Vietoris-Rips simplicial complexes constructed based on the image landmarks at an increasing distance threshold and topological (homological) features computed at each threshold and summarized in a form known as persistent barcodes. We vectorise the space of persistent barcodes using a technique known as persistent binning where we demonstrated the strength of it for various image analysis purposes. Different machine learning approaches are adopted to develop automatic detection of tiny texture distortion in many image analysis applications. Homological invariants used in this thesis are the 0 and 1 dimensional Betti numbers. We developed an innovative approach to design persistent homology (PH) based algorithms for automatic detection of the above described types of image distortion. In particular, we developed the first PH-detector of morphing attacks on passport face biometric images. We shall demonstrate significant accuracy of 2 such morph detection algorithms with 4 types of automatically extracted image landmarks: Local Binary patterns (LBP), 8-neighbour super-pixels (8NSP), Radial-LBP (R-LBP) and centre-symmetric LBP (CS-LBP). Using any of these techniques yields several persistent barcodes that summarise persistent topological features that help gaining insights into complex hidden structures not amenable by other image analysis methods. We shall also demonstrate significant success of a similarly developed PH-based universal steganalysis tool capable for the detection of secret messages hidden inside digital images. We also argue through a pilot study that building PH records from digital images can differentiate breast malignant tumours from benign tumours using digital mammographic images. The research presented in this thesis creates new opportunities to build real applications based on TDA and demonstrate many research challenges in a variety of image processing/analysis tasks. For example, we describe a TDA-based exemplar image inpainting technique (TEBI), superior to existing exemplar algorithm, for the reconstruction of missing image regions

    Inpainting basé motif d'images et de vidéos appliqué aux données stéréoscopiques avec carte de profondeur

    Get PDF
    We focus on the study and the enhancement of greedy pattern-based image processing algorithmsfor the specific purpose of inpainting, i.e., the automatic completion of missing data in digitalimages and videos. We first review the state of the art methods in this field and analyze the important steps of prominent greedy algorithms in the literature. Then, we propose a set of changesthat significantly enhance the global geometric coherence of images reconstructed with this kindof algorithms. We also focus on the reduction of the visual bloc artifacts classically appearing inthe reconstruction results. For this purpose, we define a tensor-inspired formalism for fast anisotropic patch blending, guided by the geometry of the local image structures and by the automaticdetection of the artifact locations. We illustrate the improvement of the visual quality brought byour contributions with many examples, and show that we are generic enough to perform similaradaptations to other existing pattern-based inpainting algorithms. Finally, we extend and applyour reconstruction algorithms to stereoscopic image and video data, synthesized with respect tonew virtual camera viewpoints. We incorporate the estimated depth information (available fromthe original stereo pairs) in our inpainting and patch blending formalisms to propose a visuallysatisfactory solution to the non-trivial problem of automatic disocclusion of real resynthesizedstereoscopic scenes.Nous nous intéressons à l'étude et au perfectionnement d'algorithmes de traitement d'image gloutons basés motif, pour traiter le problème général de l'"inpainting", c-à-d la complétion automatique de données manquantes dans les images et les vidéos numériques. Après avoir dressé un état de l'art du domaine et analysé les étapes sensibles des algorithmes gloutons existants dans la littérature, nous proposons, dans un premier temps, un ensemble de modifications améliorant de façon significative la cohérence géométrique globale des images reconstruites par ce type d'algorithmes. Dans un deuxième temps, nous nous focalisons sur la réduction des artefacts visuels de type "bloc" classiquement présents dans les résultats de reconstruction, en proposant un formalisme tensoriel de mélange anisotrope rapide de patchs, guidé par la géométrie des structures locales et par la détection automatique des points de localisation des artefacts. Nous illustrons avec de nombreux exemples que l'ensemble de ces contributions améliore significativement la qualité visuelle des résultats obtenus, tout en restant suffisamment générique pour s'adapter à tous type d'algorithmes d'inpainting basé motif.Pour finir, nous nous concentrons sur l'application et l'adaptation de nos algorithmes de reconstruction sur des données stéréoscopiques (images et vidéos) resynthétisées suivant de nouveaux points de vue virtuels de caméra.Nous intégrons l'information de profondeur estimée (à partir des vues stéréos originales) dans nos méthodes d'inpainting et de mélange de patch pour proposer une solution visuellement satisfaisante au problème difficile de la désoccultation automatique de scènes réelles resynthétisées

    Image Inpainting Methods Evaluation and Improvement

    Get PDF
    With the upgrowing of digital processing of images and film archiving, the need for assisted or unsupervised restoration required the development of a series of methods and techniques. Among them, image inpainting is maybe the most impressive and useful. Based on partial derivative equations or texture synthesis, many other hybrid techniques have been proposed recently. The need for an analytical comparison, beside the visual one, urged us to perform the studies shown in the present paper. Starting with an overview of the domain, an evaluation of the five methods was performed using a common benchmark and measuring the PSNR. Conclusions regarding the performance of the investigated algorithms have been presented, categorizing them in function of the restored image structure. Based on these experiments, we have proposed an adaptation of Oliveira’s and Hadhoud’s algorithms, which are performing well on images with natural defects

    An evaluation of partial differential equations based digital inpainting algorithms

    Get PDF
    Partial Differential equations (PDEs) have been used to model various phenomena/tasks in different scientific and engineering endeavours. This thesis is devoted to modelling image inpainting by numerical implementations of certain PDEs. The main objectives of image inpainting include reconstructing damaged parts and filling-in regions in which data/colour information are missing. Different automatic and semi-automatic approaches to image inpainting have been developed including PDE-based, texture synthesis-based, exemplar-based, and hybrid approaches. Various challenges remain unresolved in reconstructing large size missing regions and/or missing areas with highly textured surroundings. Our main aim is to address such challenges by developing new advanced schemes with particular focus on using PDEs of different orders to preserve continuity of textural and geometric information in the surrounding of missing regions. We first investigated the problem of partial colour restoration in an image region whose greyscale channel is intact. A PDE-based solution is known that is modelled as minimising total variation of gradients in the different colour channels. We extend the applicability of this model to partial inpainting in other 3-channels colour spaces (such as RGB where information is missing in any of the two colours), simply by exploiting the known linear/affine relationships between different colouring models in the derivation of a modified PDE solution obtained by using the Euler-Lagrange minimisation of the corresponding gradient Total Variation (TV). We also developed two TV models on the relations between greyscale and colour channels using the Laplacian operator and the directional derivatives of gradients. The corresponding Euler-Lagrange minimisation yields two new PDEs of different orders for partial colourisation. We implemented these solutions in both spatial and frequency domains. We measure the success of these models by evaluating known image quality measures in inpainted regions for sufficiently large datasets and scenarios. The results reveal that our schemes compare well with existing algorithms, but inpainting large regions remains a challenge. Secondly, we investigate the Total Inpainting (TI) problem where all colour channels are missing in an image region. Reviewing and implementing existing PDE-based total inpainting methods reveal that high order PDEs, applied to each colour channel separately, perform well but are influenced by the size of the region and the quantity of texture surrounding it. Here we developed a TI scheme that benefits from our partial inpainting approach and apply two PDE methods to recover the missing regions in the image. First, we extract the (Y, Cb, Cr) of the image outside the missing region, apply the above PDE methods for reconstructing the missing regions in the luminance channel (Y), and then use the colourisation method to recover the missing (Cb, Cr) colours in the region. We shall demonstrate that compared to existing TI algorithms, our proposed method (using 2 PDE methods) performs well when tested on large datasets of natural and face images. Furthermore, this helps understanding of the impact of the texture in the surrounding areas on inpainting and opens new research directions. Thirdly, we investigate existing Exemplar-Based Inpainting (EBI) methods that do not use PDEs but simultaneously propagate the texture and structure into the missing region by finding similar patches within the rest of image and copying them into the boundary of the missing region. The order of patch propagation is determined by a priority function, and the similarity is determined by matching criteria. We shall exploit recently emerging Topological Data Analysis (TDA) tools to create innovative EBI schemes, referred to as TEBI. TDA studies shapes of data/objects to quantify image texture in terms of connectivity and closeness properties of certain data landmarks. Such quantifications help determine the appropriate size of patch propagation and will be used to modify the patch propagation priority function using the geometrical properties of curvature of isophotes, and to improve the matching criteria of patches by calculating the correlation coefficients from the spatial, gradient and Laplacian domains. The performance of this TEBI method will be tested by applying it to natural dataset images, resulting in improved inpainting when compared with other EBI methods. Fourthly, the recent hybrid-based inpainting techniques are reviewed and a number of highly performing innovative hybrid techniques that combine the use of high order PDE methods with the TEBI method for the simultaneous rebuilding of the missing texture and structure regions in an image are proposed. Such a hybrid scheme first decomposes the image into texture and structure components, and then the missing regions in these components are recovered by TEBI and PDE based methods respectively. The performance of our hybrid schemes will be compared with two existing hybrid algorithms. Fifthly, we turn our attention to inpainting large missing regions, and develop an innovative inpainting scheme that uses the concept of seam carving to reduce this problem to that of inpainting a smaller size missing region that can be dealt with efficiently using the inpainting schemes developed above. Seam carving resizes images based on content-awareness of the image for both reduction and expansion without affecting those image regions that have rich information. The missing region of the seam-carved version will be recovered by the TEBI method, original image size is restored by adding the removed seams and the missing parts of the added seams are then repaired using a high order PDE inpainting scheme. The benefits of this approach in dealing with large missing regions are demonstrated. The extensive performance testing of the developed inpainting methods shows that these methods significantly outperform existing inpainting methods for such a challenging task. However, the performance is still not acceptable in recovering large missing regions in high texture and structure images, and hence we shall identify remaining challenges to be investigated in the future. We shall also extend our work by investigating recently developed deep learning based image/video colourisation, with the aim of overcoming its limitations and shortcoming. Finally, we should also describe our on-going research into using TDA to detect recently growing serious “malicious” use of inpainting to create Fake images/videos
    • …
    corecore