174 research outputs found

    Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector

    Get PDF
    This paper presents phase-locked loop (PLL) reference-spur reduction design techniques exploiting a sub-sampling phase detector (SSPD) (which is also referred to as a sampling phase detector). The VCO is sampled by the reference clock without using a frequency divider and an amplitude controlled charge pump is used which is inherently insensitive to mismatch. The main remaining source of the VCO reference spur is the periodic disturbance of the VCO by the sampling at the reference frequency. The underlying VCO sampling spur mechanisms are analyzed and their effect is minimized by using dummy samplers and isolation buffers. A duty-cycle-controlled reference buffer and delay-locked loop (DLL) tuning are proposed to further reduce the worst case spur level. To demonstrate the effectiveness of the\ud proposed spur reduction techniques, a 2.21 GHz PLL is designed and fabricated in 0.18 m CMOS technology. While using a high loop-bandwidth-to-reference-frequency ratio of 1/20, the reference spur measured from 20 chips is 80 dBc. The PLL consumes 3.8 mW while the in-band phase noise is 121 dBc/Hz at 200 kHz and the output jitter integrated from 10 kHz to 100 MHz is 0.3 ps rms

    New strategies for low noise, agile PLL frequency synthesis

    Get PDF
    Phase-Locked Loop based frequency synthesis is an essential technique employed in wireless communication systems for local oscillator generation. The ultimate goal in any design of frequency synthesisers is to generate precise and stable output frequencies with fast switching and minimal spurious and phase noise. The conflict between high resolution and fast switching leads to two separate integer synthesisers to satisfy critical system requirements. This thesis concerns a new sigma-delta fractional-N synthesiser design which is able to be directly modulated at high data rates while simultaneously achieving good noise performance. Measured results from a prototype indicate that fast switching, low noise and spurious free spectra are achieved for most covered frequencies. The phase noise of the unmodulated synthesiser was measured āˆ’113 dBc/Hz at 100 kHz offset from the carrier. The intermodulation effect in synthesisers is capable of producing a family of spurious components of identical form to fractional spurs caused in quantisation process. This effect directly introduces high spurs on some channels of the synthesiser output. Numerical and analytic results describing this effect are presented and amplitude and distribution of the resulting fractional spurs are predicted and validated against simulated and measured results. Finally an experimental arrangement, based on a phase compensation technique, is presented demonstrating significant suppression of intermodulation-borne spurs. A new technique, pre-distortion noise shaping, is proposed to dramatically reduce the impact of fractional spurs in fractional-N synthesisers. The key innovation is the introduction in the bitstream generation process of carefully-chosen set of components at identical offset frequencies and amplitudes and in anti-phase with the principal fractional spurs. These signals are used to modify the Ī£-Ī” noise shaping, so that fractional spurs are effectively cancelled. This approach can be highly effective in improving spectral purity and reduction of spurious components caused by the Ī£-Ī” modulator, quantisation noise, intermodulation effects and any other circuit factors. The spur cancellation is achieved in the digital part of the synthesiser without introducing additional circuitry. This technique has been convincingly demonstrated by simulated and experimental results

    Hybrid DDS-PLL based reconfigurable oscillators with high spectral purity for cognitive radio

    Get PDF
    Analytical, design and simulation studies on the performance optimization of reconfigurable architecture of a Hybrid DDS ā€“ PLL are presented in this thesis. The original contributions of this thesis are aimed towards the DDS, the dithering (spur suppression) scheme and the PLL. A new design of Taylor series-based DDS that reduces the dynamic power and number of multipliers is a significant contribution of this thesis. This thesis compares dynamic power and SFDR achieved in the design of varieties of DDS such as Quartic, Cubic, Linear and LHSC. This thesis proposes two novel schemes namely ā€œHartley Image Suppressionā€ and ā€œAdaptive Sinusoidal Interference Cancellationā€ overcoming the low noise floor of traditional dithering schemes. The simulation studies on a Taylor series-based DDS reveal an improvement in SFDR from 74 dB to 114 dB by using Least Mean Squares -Sinusoidal Interference Canceller (LM-SIC) with the noise floor maintained at -200 dB. Analytical formulations have been developed for a second order PLL to relate the phase noise to settling time and Phase Margin (PM) as well as to relate jitter variance and PM. New expressions relating phase noise to PM and lock time to PM are derived. This thesis derives the analytical relationship between the roots of the characteristic equation of a third order PLL and its performance metrics like PM, Gardnerā€™s stability factor, jitter variance, spur gain and ratio of noise power to carrier power. This thesis presents an analysis to relate spur gain and capacitance ratio of a third order PLL. This thesis presents an analytical relationship between the lock time and the roots of its characteristic equation of a third order PLL. Through Vietaā€™s circle and Vietaā€™s angle, the performance metrics of a third order PLL are related to the real roots of its characteristic equation

    ULTRA-LOW-JITTER, MMW-BAND FREQUENCY SYNTHESIZERS BASED ON A CASCADED ARCHITECTURE

    Get PDF
    Department of Electrical EngineeringThis thesis presents an ultra-low-jitter, mmW-band frequency synthesizers based on a cascaded architecture. First, the mmW-band frequency synthesizer based on a CP PLL is presented. At the first stage, the CP PLL operating at GHz-band frequencies generated low-jitter output signals due to a high-Q VCO. At the second stage, an ILFM operating at mmW-band frequencies has a wide injection bandwidth, so that the jitter performance of the mmW-band output signals is determined by the GHz-range PLL. The proposed ultra-low-jitter, mmW-band frequency synthesizer based on a CP PLL, fabricated in a 65-nm CMOS technology, generated output signals from GHz-band frequencies to mmW-band frequencies, achieving an RMS jitter of 206 fs and an IPN of ???31 dBc. The active silicon area and the total power consumption were 0.32 mm2 and 42 mW, respectively. However, due to a large in-band phase noise contribution of a PFD and a CP in the CP PLL, this first stage was difficult to achieve an ultra-low in-band phase noise. Second, to improve the in-band phase noise further, the mmW-band frequency synthesizer based on a digital SSPLL is presented. At the first stage, the digital SSPLL operating at GHz-band frequencies generated ultra-low-jitter output signals due to its sub-sampling operation and a high-Q GHz VCO. To minimize the quantization noise of the voltage quantizer in the digital SSPLL, this thesis presents an OSVC as a voltage quantizer while a small amount of power was consumed. The proposed ultra-low-jitter, mmW-band frequency synthesizer fabricated in a 65-nm CMOS technology, generated output signals from GHz-band frequencies to mmW-band frequencies, achieving an RMS jitter of 77 fs and an IPN of ???40 dBc. The active silicon area and the total power consumption were 0.32 mm2 and 42 mW, respectively.clos

    2.4 GHz Phase Locked Loop with DLL Based Spur Suppression Technique in 40nm CMOS

    Get PDF
    Phase locked loops (PLLs) are widely used as frequency synthesizers in modern communication systems because of the frequency accuracy and programmability of output frequency. Reference spur is an issue of concern in the PLL design as it merges the interference into the desired signal band. This study focuses on the design of PLLs with low reference spurs level. A PLL with 2.4 GHz output frequency is implemented in TSMC 40nm CMOS technology using a 1.1V supply. A delay locked loop (DLL) is inserted in the phase locked loop as a multiple phase generator, in order to move the fundamental spur to higher frequency. The influence of errors inside the DLL due to CMOS process on the performance of spur suppression is also analyzed in this work. Two independent calibration systems, continuous time calibration and switch capacitor integrator based calibration for DLLā€™s errors are presented, to reduce the delay errors. A spur reduction of 35 dB compared to a conventional structure is verified by the schematic simulation in Cadence

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    UltraĀ¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixerĀ¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phaseĀ¬locked loop (PLL)Ā¬based synthesizers. Harmonic cancelaĀ¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5Ā¬GHz CSDĀ¬QVCO in 0.18 Āµm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is Ā¬120 dBc at 3 MHz oļ¬€set. Compared with existing phase shift LC QVCOs, the proposed CSDĀ¬QVCO presents better phase noise and power eļ¬ƒciency. Finally, a novel injection locking frequency divider (ILFD) is presented. ImĀ¬plemented with three stages in 0.18 Āµm CMOS technology, the ILFD draws 3Ā¬mA current from a 1.8Ā¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    CMOS Signal Synthesizers for Emerging RF-to-Optical Applications

    Get PDF
    The need for clean and powerful signal generation is ubiquitous, with applications spanning the spectrum from RF to mm-Wave, to into and beyond the terahertz-gap. RF applications including mobile telephony and microprocessors have effectively harnessed mixed-signal integration in CMOS to realize robust on-chip signal sources calibrated against adverse ambient conditions. Combined with low cost and high yield, the CMOS component of hand-held devices costs a few cents per part per million parts. This low cost, and integrated digital processing, make CMOS an attractive option for applications like high-resolution imaging and ranging, and the emerging 5-G communication space. RADAR techniques when expanded to optical frequencies can enable micrometers of resolution for 3D imaging. These applications, however, impose upto 100x more exacting specifications on power and spectral purity at much higher frequencies than conventional RF synthesizers. This generation of applications will present unconventional challenges for transistor technologies - whether it is to squeeze performance in the conventionally used spectrum, already wrung dry, or signal generation and system design in the relatively emptier mm-Wave to sub-mmWave spectrum, much of the latter falling in the ``Terahertz Gap". Indeed, transistor scaling and innovative device physics leading to new transistor topologies have yielded higher cut-off frequencies in CMOS, though still lagging well behind SiGe and III-V semiconductors. To avoid multimodule solutions with functionality partitioned across different technologies, CMOS must be pushed out of its comfort zone, and technology scaling has to have accompanying breakthroughs in design approaches not only at the system but also at the block level. In this thesis, while not targeting a specific application, we seek to formulate the obstacles in synthesizing high frequency, high power and low noise signals in CMOS and construct a coherent design methodology to address them. Based on this, three novel prototypes to overcome the limiting factors in each case are presented. The first half of this thesis deals with high frequency signal synthesis and power generation in CMOS. Outside the range of frequencies where the transistor has gain, frequency generation necessitates harmonic extraction either as harmonic oscillators or as frequency multipliers. We augment the traditional maximum oscillation frequency metric (fmax), which only accounts for transistor losses, with passive component loss to derive an effective fmax metric. We then present a methodology for building oscillators at this fmax, the Maximum Gain Ring Oscillator. Next, we explore generating large signals beyond fmax through harmonic extraction in multipliers. Applying concepts of waveform shaping, we demonstrate a Power Mixer that engineers transistor nonlinearity by manipulating the amplitudes and relative phase shifts of different device nodes to maximize performance at a specific harmonic beyond device cut-off. The second half proposes a new architecture for an ultra-low noise phase-locked loop (PLL), the Reference-Sampling PLL. In conventional PLLs, a noisy buffer converts the slow, low-noise sine-wave reference signal to a jittery square-wave clock against which the phase of a noisy voltage-controlled oscillator (VCO) is corrected. We eliminate this reference buffer, and measure phase error by sampling the reference sine-wave with the 50x faster VCO waveform already available on chip, and selecting the relevant sample with voltage proportional to phase error. By avoiding the N-squared multiplication of the high-power reference buffer noise, and directly using voltage-mode phase error to control the VCO, we eliminate several noisy components in the controlling loop for ultra-low integrated jitter for a given power consumption. Further, isolation of the VCO tank from any varying load, unlike other contemporary divider-less PLL architectures, results in an architecture with record performance in the low-noise and low-spur space. We conclude with work that brings together concepts developed for clean, high-power signal generation towards a hybrid CMOS-Optical approach to Frequency-Modulated Continuous-Wave (FMCW) Light-Detection-And-Ranging (LIDAR). Cost-effective tunable lasers are temperature-sensitive and have nonlinear tuning profiles, rendering precise frequency modulations or 'chirps' untenable. Locking them to an electronic reference through an electro-optic PLL, and electronically calibrating the control signal for nonlinearity and ambient sensitivity, can make such chirps possible. Approaches that build on the body of advances in electrical PLLs to control the performance, and ease the specification on the design of optical systems are proposed. Eventually, we seek to leverage the twin advantages of silicon-intensive integration and low-cost high-yield towards developing a single-chip solution that uses on-chip signal processing and phased arrays to generate precise and robust chirps for an electronically-steerable fine LIDAR beam

    High Performance Local Oscillator Design for Next Generation Wireless Communication

    Get PDF
    Local Oscillator (LO) is an essential building block in modern wireless radios. In modern wireless radios, LO often serves as a reference of the carrier signal to modulate or demod- ulate the outgoing or incoming data. The LO signal should be a clean and stable source, such that the frequency or timing information of the carrier reference can be well-defined. However, as radio architecture evolves, the importance of LO path design has become much more important than before. Of late, many radio architecture innovations have exploited sophisticated LO generation schemes to meet the ever-increasing demands of wireless radio performances. The focus of this thesis is to address challenges in the LO path design for next-generation high performance wireless radios. These challenges include (1) Congested spectrum at low radio frequency (RF) below 5GHz (2) Continuing miniaturization of integrated wireless radio, and (3) Fiber-fast (>10Gb/s) mm-wave wireless communication. The thesis begins with a brief introduction of the aforementioned challenges followed by a discussion of the opportunities projected to overcome these challenges. To address the challenge of congested spectrum at frequency below 5GHz, novel ra- dio architectures such as cognitive radio, software-defined radio, and full-duplex radio have drawn significant research interest. Cognitive radio is a radio architecture that opportunisti- cally utilize the unused spectrum in an environment to maximize spectrum usage efficiency. Energy-efficient spectrum sensing is the key to implementing cognitive radio. To enable energy-efficient spectrum sensing, a fast-hopping frequency synthesizer is an essential build- ing block to swiftly sweep the carrier frequency of the radio across the available spectrum. Chapter 2 of this thesis further highlights the challenges and trade-offs of the current LO gen- eration scheme for possible use in sweeping LO-based spectrum analysis. It follows by intro- duction of the proposed fast-hopping LO architecture, its implementation and measurement results of the validated prototype. Chapter 3 proposes an embedded phase-shifting LO-path design for wideband RF self-interference cancellation for full-duplex radio. It demonstrates a synergistic design between the LO path and signal to perform self-interference cancellation. To address the challenge of continuing miniaturization of integrated wireless radio, ring oscillator-based frequency synthesizer is an attractive candidate due to its compactness. Chapter 4 discussed the difficulty associated with implementing a Phase-Locked Loop (PLL) with ultra-small form-factor. It further proposes the concept sub-sampling PLL with time- based loop filter to address these challenges. A 65nm CMOS prototype and its measurement result are presented for validation of the concept. In shifting from RF to mm-wave frequencies, the performance of wireless communication links is boosted by significant bandwidth and data-rate expansion. However, the demand for data-rate improvement is out-pacing the innovation of radio architectures. A >10Gb/s mm-wave wireless communication at 60GHz is required by emerging applications such as virtual-reality (VR) headsets, inter-rack data transmission at data center, and Ultra-High- Definition (UHD) TV home entertainment systems. Channel-bonding is considered to be a promising technique for achieving >10Gb/s wireless communication at 60GHz. Chapter 5 discusses the fundamental radio implementation challenges associated with channel-bonding for 60GHz wireless communication and the pros and cons of prior arts that attempted to address these challenges. It is followed by a discussion of the proposed 60GHz channel- bonding receiver, which utilizes only a single PLL and enables both contiguous and non- contiguous channel-bonding schemes. Finally, Chapter 6 presents the conclusion of this thesis
    • ā€¦
    corecore