44,373 research outputs found

    Evaluation of off-road terrain with static stereo and monoscopic displays

    Get PDF
    The National Aeronautics and Space Administration is currently funding research into the design of a Mars rover vehicle. This unmanned rover will be used to explore a number of scientific and geologic sites on the Martian surface. Since the rover can not be driven from Earth in real-time, due to lengthy communication time delays, a locomotion strategy that optimizes vehicle range and minimizes potential risk must be developed. In order to assess the degree of on-board artificial intelligence (AI) required for a rover to carry out its' mission, researchers conducted an experiment to define a no AI baseline. In the experiment 24 subjects, divided into stereo and monoscopic groups, were shown video snapshots of four terrain scenes. The subjects' task was to choose a suitable path for the vehicle through each of the four scenes. Paths were scored based on distance travelled and hazard avoidance. Study results are presented with respect to: (1) risk versus range; (2) stereo versus monocular video; (3) vehicle camera height; and (4) camera field-of-view

    RTS2 - the Remote Telescope System

    Get PDF
    RTS2 is an open source observatory manager. It was written from scratch in the C++ language, with portability and modularity in mind. Its driving requirements originated from quick follow-ups of Gamma Ray Bursts. After some years of development it is now used to carry tasks it was originally not intended to carry. This article presents the current development status of the RTS2 code. It focuses on describing strategies which worked as well as things which failed to deliver expected results.Comment: 9 pages, 3 figures, Workshop on Robotic Autonomous Observatories, M\'alaga, Spain, 18-21 May 200

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Space station common module network topology and hardware development

    Get PDF
    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power

    HATSouth: a global network of fully automated identical wide-field telescopes

    Full text link
    HATSouth is the world's first network of automated and homogeneous telescopes that is capable of year-round 24-hour monitoring of positions over an entire hemisphere of the sky. The primary scientific goal of the network is to discover and characterize a large number of transiting extrasolar planets, reaching out to long periods and down to small planetary radii. HATSouth achieves this by monitoring extended areas on the sky, deriving high precision light curves for a large number of stars, searching for the signature of planetary transits, and confirming planetary candidates with larger telescopes. HATSouth employs 6 telescope units spread over 3 locations with large longitude separation in the southern hemisphere (Las Campanas Observatory, Chile; HESS site, Namibia; Siding Spring Observatory, Australia). Each of the HATSouth units holds four 0.18m diameter f/2.8 focal ratio telescope tubes on a common mount producing an 8.2x8.2 arcdeg field, imaged using four 4Kx4K CCD cameras and Sloan r filters, to give a pixel scale of 3.7 arcsec/pixel. The HATSouth network is capable of continuously monitoring 128 square arc-degrees. We present the technical details of the network, summarize operations, and present weather statistics for the 3 sites. On average each of the 6 HATSouth units has conducted observations on ~500 nights over a 2-year time period, yielding a total of more than 1million science frames at 4 minute integration time, and observing ~10.65 hours per day on average. We describe the scheme of our data transfer and reduction from raw pixel images to trend-filtered light curves and transiting planet candidates. Photometric precision reaches ~6 mmag at 4-minute cadence for the brightest non-saturated stars at r~10.5. We present detailed transit recovery simulations to determine the expected yield of transiting planets from HATSouth. (abridged)Comment: 25 pages, 11 figures, 1 table, submitted to PAS
    corecore