15,713 research outputs found

    A 14-mW PLL-less receiver in 0.18-ÎĽm CMOS for Chinese electronic toll collection standard

    Get PDF
    This is the accepted manuscript version of the following article: Xiaofeng He, et al., “A 14-mW PLL-less receiver in 0.18-μm CMOS for Chinese electronic toll collection standard”, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61(10): 763-767, August 2014. The final published version is available at: http://ieeexplore.ieee.org/document/6871304/ © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The design of a 14-mW receiver without phase-locked loop for the Chinese electronic toll collection (ETC) system in a standard 0.18-μm CMOS process is presented in this brief. Since the previously published work was mainly based on vehicle-powered systems, low power consumption was not the primary goal of such a system. In contrast, the presented system is designed for a battery-powered system. Utilizing the presented receiver architecture, the entire receiver only consumes 7.8 mA, at the supply voltage of 1.8 V, which indicates a power saving of at least 38% compared with other state-of-the-art designs for the same application. To verify the performance, the bit error rate is measured to be better than 10-6, which well satisfies the Chinese ETC standard. Moreover, the sensitivity of the designed receiver can be readjusted to -50 dBm, which is required by the standard.Peer reviewe

    Radio Frequency Interference Mitigation

    Full text link
    Radio astronomy observational facilities are under constant upgradation and development to achieve better capabilities including increasing the time and frequency resolutions of the recorded data, and increasing the receiving and recording bandwidth. As only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, this results in the radio observational instrumentation being inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of astronomical data and even lead to data loss. The impact of RFIs on scientific outcome is becoming progressively difficult to manage. In this article, we motivate the requirement for RFI mitigation, and review the RFI characteristics, mitigation techniques and strategies. Mitigation strategies adopted at some representative observatories, telescopes and arrays are also introduced. We also discuss and present advantages and shortcomings of the four classes of RFI mitigation strategies, applicable at the connected causal stages: preventive, pre-detection, pre-correlation and post-correlation. The proper identification and flagging of RFI is key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation techniques. This can be achieved through a strategy involving a combination of the discussed techniques in stages. Recent advances in high speed digital signal processing and high performance computing allow for performing RFI excision of large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.Comment: 26 pages, 10 figures, Chinese version accepted for publication in Acta Astronomica Sinica; English version to appear in Chinese Astronomy and Astrophysic

    Development of an Emergency Radio Beacon for Small Unmanned Aerial Vehicles

    Get PDF
    Emergency locator transmitters (ELTs) used to locate manned aircrafts are not well suited to find and recover small crashed unmanned aerial vehicles (UAVs). ELTs utilize an international satellite system for search and rescue (Cospas-Sarsat System), which should leverage its expensive resources to save lives as a priority. Besides, ELTs are too big and heavy to be used within small UAVs. Some of the existing solutions for this problem are based on receivers that detect signal strength, which may be a long and tedious process not suitable for user needs. Others do not have enough range or require radio license and expensive amateur radio receivers. This paper presents an emergency radio beacon specifically designed to locate small UAVs. It is triggered automatically in the event of a crash and allows finding and recovering a crashed UAV in a fast and simple way. It meets not only the required specifications of user-friendliness, size and weight of this kind of application, but also it is a high precision and low cost device. Besides, it has enough range and endurance. The experiments carried out show the operation of the proposed system

    Antennas and Propagation of Implanted RFIDs for Pervasive Healthcare Applications

    Get PDF
    © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/JPROC.2010.205101
    • …
    corecore