3,183 research outputs found

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Speculative Thread Framework for Transient Management and Bumpless Transfer in Reconfigurable Digital Filters

    Full text link
    There are many methods developed to mitigate transients induced when abruptly changing dynamic algorithms such as those found in digital filters or controllers. These "bumpless transfer" methods have a computational burden to them and take time to implement, causing a delay in the desired switching time. This paper develops a method that automatically reconfigures the computational resources in order to implement a transient management method without any delay in switching times. The method spawns a speculative thread when it predicts if a switch in algorithms is imminent so that the calculations are done prior to the switch being made. The software framework is described and experimental results are shown for a switching between filters in a filter bank.Comment: 6 pages, 7 figures, to be presented at American Controls Conference 201

    A novel predictive optimization scheme for energy-efficient reliable operation of a sensor in dynamic scenarios

    Get PDF
    Wireless Sensor Network (WSN) has been studied for more than a decades that resulted in evolution of the significant applications towards assisting in sensing physical information from human inaccesible area. It was also observed from existing sysem that energy attribute is the root cause of majority of the problems associated with WSN that also gives rise to various operational reliability issue. Therefore, the prime goal of the proposed study is to present a novel predictive optimization approach of data fusion in order to jointly address the problems associated with energy efficiency and reliable operation of sensor nodes in WSN. An analytical research approach is carried out in order to ensure that a time-based synchronization scheme contributes to offer an evolutionary approach towards significant energy optimization. A simulation-based benchmarking analysis is carried out to find that proposed system offers good energy-efficient performance in comparison to existing approaches

    Observations on Factors Affecting Performance of MapReduce based Apriori on Hadoop Cluster

    Full text link
    Designing fast and scalable algorithm for mining frequent itemsets is always being a most eminent and promising problem of data mining. Apriori is one of the most broadly used and popular algorithm of frequent itemset mining. Designing efficient algorithms on MapReduce framework to process and analyze big datasets is contemporary research nowadays. In this paper, we have focused on the performance of MapReduce based Apriori on homogeneous as well as on heterogeneous Hadoop cluster. We have investigated a number of factors that significantly affects the execution time of MapReduce based Apriori running on homogeneous and heterogeneous Hadoop Cluster. Factors are specific to both algorithmic and non-algorithmic improvements. Considered factors specific to algorithmic improvements are filtered transactions and data structures. Experimental results show that how an appropriate data structure and filtered transactions technique drastically reduce the execution time. The non-algorithmic factors include speculative execution, nodes with poor performance, data locality & distribution of data blocks, and parallelism control with input split size. We have applied strategies against these factors and fine tuned the relevant parameters in our particular application. Experimental results show that if cluster specific parameters are taken care of then there is a significant reduction in execution time. Also we have discussed the issues regarding MapReduce implementation of Apriori which may significantly influence the performance.Comment: 8 pages, 8 figures, International Conference on Computing, Communication and Automation (ICCCA2016
    • …
    corecore