7,473 research outputs found

    Scalable And Efficient Outlier Detection In Large Distributed Data Sets With Mixed-type Attributes

    Get PDF
    An important problem that appears often when analyzing data involves identifying irregular or abnormal data points called outliers. This problem broadly arises under two scenarios: when outliers are to be removed from the data before analysis, and when useful information or knowledge can be extracted by the outliers themselves. Outlier Detection in the context of the second scenario is a research field that has attracted significant attention in a broad range of useful applications. For example, in credit card transaction data, outliers might indicate potential fraud; in network traffic data, outliers might represent potential intrusion attempts. The basis of deciding if a data point is an outlier is often some measure or notion of dissimilarity between the data point under consideration and the rest. Traditional outlier detection methods assume numerical or ordinal data, and compute pair-wise distances between data points. However, the notion of distance or similarity for categorical data is more difficult to define. Moreover, the size of currently available data sets dictates the need for fast and scalable outlier detection methods, thus precluding distance computations. Additionally, these methods must be applicable to data which might be distributed among different locations. In this work, we propose novel strategies to efficiently deal with large distributed data containing mixed-type attributes. Specifically, we first propose a fast and scalable algorithm for categorical data (AVF), and its parallel version based on MapReduce (MR-AVF). We extend AVF and introduce a fast outlier detection algorithm for large distributed data with mixed-type attributes (ODMAD). Finally, we modify ODMAD in order to deal with very high-dimensional categorical data. Experiments with large real-world and synthetic data show that the proposed methods exhibit large performance gains and high scalability compared to the state-of-the-art, while achieving similar accuracy detection rates

    Intrusion Detection System with Data Mining Approach: A Review

    Get PDF
    Despite of growing information technology widely, security has remained one challenging area for computers and networks. Recently many researchers have focused on intrusion detection system based on data mining techniques as an efficient strategy. The main problem in intrusion detection system is accuracy to detect new attacks therefore unsupervised methods should be applied. On the other hand, intrusion in system must be recognized in realtime, although, intrusion detection system is also helpful in off-line status for removing weaknesses of network2019;s security. However, data mining techniques can lead us to discover hidden information from network2019;s log data. In this survey, we try to clarify: first,the different problem definitions with regard to network intrusion detection generally; second, the specific difficulties encountered in this field of research; third, the varying assumptions, heuristics, and intuitions forming the basis of erent approaches; and how several prominent solutions tackle different problems

    Comparative Study of Improving Classifiers Accuracies

    Get PDF
    Outlier analysis is an essential task in data science to wipe out inconsistencies from data to build a good model. Finding outliers from categorical data is a tough task. To model a good Classifier, it is necessary to eliminate outliers from data. While modeling categorical data, most infrequent records are treated as outliers. These outliers would disturb the entire data in modeling a good classifier. This paper presents the comparison between classifiers accuracies which are built by normally distributed Outlier factor by infrequency (NOFI) to OFI with different inputs. In modeling a classifier for categorical data, high frequent records are most useful and most infrequent records are most useless. So the infrequent records are obstacles in modeling the classifiers. The experiments are conducted for this comparison on bank dataset with 45000 records and Nursery dataset with 14000 records approximately, which are taken from UCI ML Repository. For normally distributed OFI, the inputs are not needed. It generates the number of outliers automatically. In OFI it is needed to give the inputs. However the threshold value is needed to generate infrequent itemsets for both methods

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    New scalable machine learning methods: beyond classification and regression

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Abstract] The recent surge in data available has spawned a new and promising age of machine learning. Success cases of machine learning are arriving at an increasing rate as some algorithms are able to leverage immense amounts of data to produce great complicated predictions. Still, many algorithms in the toolbox of the machine learning practitioner have been render useless in this new scenario due to the complications associated with large-scale learning. Handling large datasets entails logistical problems, limits the computational and spatial complexity of the used algorithms, favours methods with few or no hyperparameters to be con gured and exhibits speci c characteristics that complicate learning. This thesis is centered on the scalability of machine learning algorithms, that is, their capacity to maintain their e ectivity as the scale of the data grows, and how it can be improved. We focus on problems for which the existing solutions struggle when the scale grows. Therefore, we skip classi cation and regression problems and focus on feature selection, anomaly detection, graph construction and explainable machine learning. We analyze four di erent strategies to obtain scalable algorithms. First, we explore distributed computation, which is used in all of the presented algorithms. Besides this technique, we also examine the use of approximate models to speed up computations, the design of new models that take advantage of a characteristic of the input data to simplify training and the enhancement of simple models to enable them to manage large-scale learning. We have implemented four new algorithms and six versions of existing ones that tackle the mentioned problems and for each one we report experimental results that show both their validity in comparison with competing methods and their capacity to scale to large datasets. All the presented algorithms have been made available for download and are being published in journals to enable practitioners and researchers to use them.[Resumen] El reciente aumento de la cantidad de datos disponibles ha dado lugar a una nueva y prometedora era del aprendizaje máquina. Los éxitos en este campo se están sucediendo a un ritmo cada vez mayor gracias a la capacidad de algunos algoritmos de aprovechar inmensas cantidades de datos para producir predicciones difíciles y muy certeras. Sin embargo, muchos de los algoritmos hasta ahora disponibles para los científicos de datos han perdido su efectividad en este nuevo escenario debido a las complicaciones asociadas al aprendizaje a gran escala. Trabajar con grandes conjuntos de datos conlleva problemas logísticos, limita la complejidad computacional y espacial de los algoritmos utilizados, favorece los métodos con pocos o ningún hiperparámetro a configurar y muestra complicaciones específicas que dificultan el aprendizaje. Esta tesis se centra en la escalabilidad de los algoritmos de aprendizaje máquina, es decir, en su capacidad de mantener su efectividad a medida que la escala del conjunto de datos aumenta. Ponemos el foco en problemas cuyas soluciones actuales tienen problemas al aumentar la escala. Por tanto, obviando la clasificación y la regresión, nos centramos en la selección de características, detección de anomalías, construcción de grafos y en el aprendizaje máquina explicable. Analizamos cuatro estrategias diferentes para obtener algoritmos escalables. En primer lugar, exploramos la computación distribuida, que es utilizada en todos los algoritmos presentados. Además de esta técnica, también examinamos el uso de modelos aproximados para acelerar los cálculos, el dise~no de modelos que aprovechan una particularidad de los datos de entrada para simplificar el entrenamiento y la potenciación de modelos simples para adecuarlos al aprendizaje a gran escala. Hemos implementado cuatro nuevos algoritmos y seis versiones de algoritmos existentes que tratan los problemas mencionados y para cada uno de ellos detallamos resultados experimentales que muestran tanto su validez en comparación con los métodos previamente disponibles como su capacidad para escalar a grandes conjuntos de datos. Todos los algoritmos presentados han sido puestos a disposición del lector para su descarga y se han difundido mediante publicaciones en revistas científicas para facilitar que tanto investigadores como científicos de datos puedan conocerlos y utilizarlos.[Resumo] O recente aumento na cantidade de datos dispo~nibles deu lugar a unha nova e prometedora era no aprendizaxe máquina. Os éxitos neste eido estanse a suceder a un ritmo cada vez maior gracias a capacidade dalgúns algoritmos de aproveitar inmensas cantidades de datos para producir prediccións difíciles e moi acertadas. Non obstante, moitos dos algoritmos ata agora dispo~nibles para os científicos de datos perderon a súa efectividade neste novo escenario por mor das complicacións asociadas ao aprendizaxe a grande escala. Traballar con grandes conxuntos de datos leva consigo problemas loxísticos, limita a complexidade computacional e espacial dos algoritmos empregados, favorece os métodos con poucos ou ningún hiperparámetro a configurar e ten complicacións específicas que dificultan o aprendizaxe. Esta tese céntrase na escalabilidade dos algoritmos de aprendizaxe máquina, é dicir, na súa capacidade de manter a súa efectividade a medida que a escala do conxunto de datos aumenta. Tratamos problemas para os que as solucións dispoñibles teñen problemas cando crece a escala. Polo tanto, deixando no canto a clasificación e a regresión, centrámonos na selección de características, detección de anomalías, construcción de grafos e no aprendizaxe máquina explicable. Analizamos catro estratexias diferentes para obter algoritmos escalables. En primeiro lugar, exploramos a computación distribuída, que empregamos en tódolos algoritmos presentados. Ademáis desta técnica, tamén examinamos o uso de modelos aproximados para acelerar os cálculos, o deseño de modelos que aproveitan unha particularidade dos datos de entrada para simplificar o adestramento e a potenciación de modelos sinxelos para axeitalos ao aprendizaxe a gran escala. Implementamos catro novos algoritmos e seis versións de algoritmos existentes que tratan os problemas mencionados e para cada un deles expoñemos resultados experimentais que mostran tanto a súa validez en comparación cos métodos previamente dispoñibles como a súa capacidade para escalar a grandes conxuntos de datos. Tódolos algoritmos presentados foron postos a disposición do lector para a súa descarga e difundíronse mediante publicacións en revistas científicas para facilitar que tanto investigadores como científicos de datos poidan coñecelos e empregalos

    Anomaly Detection in Categorical Datasets with Artificial Contrasts

    Get PDF
    abstract: Anomaly is a deviation from the normal behavior of the system and anomaly detection techniques try to identify unusual instances based on deviation from the normal data. In this work, I propose a machine-learning algorithm, referred to as Artificial Contrasts, for anomaly detection in categorical data in which neither the dimension, the specific attributes involved, nor the form of the pattern is known a priori. I use RandomForest (RF) technique as an effective learner for artificial contrast. RF is a powerful algorithm that can handle relations of attributes in high dimensional data and detect anomalies while providing probability estimates for risk decisions. I apply the model to two simulated data sets and one real data set. The model was able to detect anomalies with a very high accuracy. Finally, by comparing the proposed model with other models in the literature, I demonstrate superior performance of the proposed model.Dissertation/ThesisMasters Thesis Industrial Engineering 201
    • …
    corecore