340 research outputs found

    Linear Relaxation Processes Governed by Fractional Symmetric Kinetic Equations

    Full text link
    We get fractional symmetric Fokker - Planck and Einstein - Smoluchowski kinetic equations, which describe evolution of the systems influenced by stochastic forces distributed with stable probability laws. These equations generalize known kinetic equations of the Brownian motion theory and contain symmetric fractional derivatives over velocity and space, respectively. With the help of these equations we study analytically the processes of linear relaxation in a force - free case and for linear oscillator. For a weakly damped oscillator we also get kinetic equation for the distribution in slow variables. Linear relaxation processes are also studied numerically by solving corresponding Langevin equations with the source which is a discrete - time approximation to a white Levy noise. Numerical and analytical results agree quantitatively.Comment: 30 pages, LaTeX, 13 figures PostScrip

    Heat and work distributions for mixed Gauss-Cauchy process

    Full text link
    We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two independent Levy white noises with stability indices α=2\alpha=2 and α=1\alpha=1. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations to either bath or external force acting on the system

    Stationary states for underdamped anharmonic oscillators driven by Cauchy noise

    Full text link
    Using methods of stochastic dynamics, we have studied stationary states in the underdamped anharmonic stochastic oscillators driven by Cauchy noise. Shape of stationary states depend both on the potential type and the damping. If the damping is strong enough, for potential wells which in the overdamped regime produce multimodal stationary states, stationary states in the underdamped regime can be multimodal with the same number of modes like in the overdamped regime. For the parabolic potential, the stationary density is always unimodal and it is given by the two dimensional α\alpha-stable density. For the mixture of quartic and parabolic single-well potentials the stationary density can be bimodal. Nevertheless, the parabolic addition, which is strong enough, can destroy bimodlity of the stationary state.Comment: 9 page

    Stationary states in Langevin dynamics under asymmetric L\'evy noises

    Full text link
    Properties of systems driven by white non-Gaussian noises can be very different from these systems driven by the white Gaussian noise. We investigate stationary probability densities for systems driven by α\alpha-stable L\'evy type noises, which provide natural extension to the Gaussian noise having however a new property mainly a possibility of being asymmetric. Stationary probability densities are examined for a particle moving in parabolic, quartic and in generic double well potential models subjected to the action of α\alpha-stable noises. Relevant solutions are constructed by methods of stochastic dynamics. In situations where analytical results are known they are compared with numerical results. Furthermore, the problem of estimation of the parameters of stationary densities is investigated.Comment: 9 pages, 9 figures, 3 table

    Perturbations of Noise: The origins of Isothermal Flows

    Full text link
    We make a detailed analysis of both phenomenological and analytic background for the "Brownian recoil principle" hypothesis (Phys. Rev. A 46, (1992), 4634). A corresponding theory of the isothermal Brownian motion of particle ensembles (Smoluchowski diffusion process approximation), gives account of the environmental recoil effects due to locally induced tiny heat flows. By means of local expectation values we elevate the individually negligible phenomena to a non-negligible (accumulated) recoil effect on the ensemble average. The main technical input is a consequent exploitation of the Hamilton-Jacobi equation as a natural substitute for the local momentum conservation law. Together with the continuity equation (alternatively, Fokker-Planck), it forms a closed system of partial differential equations which uniquely determines an associated Markovian diffusion process. The third Newton law in the mean is utilised to generate diffusion-type processes which are either anomalous (enhanced), or generically non-dispersive.Comment: Latex fil
    corecore