1,787 research outputs found

    Near-optimal perfectly matched layers for indefinite Helmholtz problems

    Full text link
    A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounded domains is presented. This construction is based on a near-best uniform rational interpolant of the inverse square root function on the union of a negative and positive real interval, designed with the help of a classical result by Zolotarev. Using Krein's interpretation of a Stieltjes continued fraction, this interpolant can be converted into a three-term finite difference discretization of a perfectly matched layer (PML) which converges exponentially fast in the number of grid points. The convergence rate is asymptotically optimal for both propagative and evanescent wave modes. Several numerical experiments and illustrations are included.Comment: Accepted for publication in SIAM Review. To appear 201

    The motion of a deforming capsule through a corner

    Get PDF
    A three-dimensional deformable capsule convected through a square duct with a corner is studied via numerical simulations. We develop an accelerated boundary integral implementation adapted to general geometries and boundary conditions. A global spectral method is adopted to resolve the dynamics of the capsule membrane developing elastic tension according to the neo-Hookean constitutive law and bending moments in an inertialess flow. The simulations show that the trajectory of the capsule closely follows the underlying streamlines independently of the capillary number. The membrane deformability, on the other hand, significantly influences the relative area variations, the advection velocity and the principal tensions observed during the capsule motion. The evolution of the capsule velocity displays a loss of the time-reversal symmetry of Stokes flow due to the elasticity of the membrane. The velocity decreases while the capsule is approaching the corner as the background flow does, reaches a minimum at the corner and displays an overshoot past the corner due to the streamwise elongation induced by the flow acceleration in the downstream branch. This velocity overshoot increases with confinement while the maxima of the major principal tension increase linearly with the inverse of the duct width. Finally, the deformation and tension of the capsule are shown to decrease in a curved corner

    Non degenerate anisotropic green's function for 3D magneto-electro-elasticity and bem shape sensitivity framework for 3D contact in anisotropic elasticity

    Get PDF
    The first part of the thesis presents a new expression for the magneto electro elastic (MEE) fundamental solution which is explicit in terms of the Stroh’s eigenvalues, remains welldefined for repeated Stroh’s eigenvalues and is exact. We then define a fast and robust numerical scheme to evaluate the function and its derivatives based on a double Fourier series representation. These newly developed expressions allow to compute the Fourier coefficients for any material symmetry or anisotropy, and is done only once for a given material. One evaluates the Green’s function and its derivatives through simple trigonometric formulas. Several results are presented for elastic, piezoelectric/piezomagnetic and magneto-eletro-elastic materials. The second part of the thesis provides a BEM-based formulation for shape sensitivity analysis of anisotropic elastic media, also including contact conditions, and based on the newly presented Green’s functions. The parameter sensitivity is evaluated using the complex step (CS) method: An approach similar to finite differentiation (FD), with the advantage of being step-size independent, therefore an extremely robust method. A convergence study on shape sensitivity is provided, proving the efficiency of the CS-BEM approach. We solve Hertz and non-Hertzian type contact problems as well as an application example of a dovetail joint found in gas turbines. We analyzed several parmeter sensitivities to shape variation, such as contact pressure, shear stress, as well as Von Mises stress, for both isotropic and anisotropic materials. The results showed good agreement with analytical solutions, as well as other works from the literature. In comparison with FD, which did not converged for an example case, the CS method showed excellent stability and precision for a broad range of step sizes.A primeira parte da tese apresenta uma nova expressão para a solução fundamental Magneto-Eletro-Elástica explícita em termos de autovalores de Stroh, bem definida para autovalores repetidos, e exata. Em seguida, uma série de Fourier dupla é utilizada como uma forma rápida e robusta para avaliar a solução fundamental e as suas derivadas. As expressões recém-desenvolvidas permitem calcular os coeficientes de Fourier para qualquer simetria ou anisotropia de material, o que é feito apenas uma vez para um dado material. Diversos resultados são apresentados para materiais elásticos, piezoelétricos e magneto-eletro-elásticos. A segunda parte desta tese apresenta uma formulação completa para análise de sensibilidade em estruturas elasticas anisotrópicas baseada nestas funções de Green recém apresentadas, incluindo condições de contato. A sensibilidade à parâmetros é avaliada utilizando o método do incremento complexo, método extremamente robusto, similar a diferenciação finita (FD), mas independente do tamanho do incremento. Problemas de contato de Hertz e não Hertzianos foram resolvidos, assim como um estudo de aplicação de uma palheta de turbinas a gás. Foi avaliada a sensibilidade à variação de forma das tensões de contato, tensões cisalhantes máximas e também nas tensões equivalentes de Von Mises, em diferentes materiais anisotrópicos. Os resultados mostraram boa correlação com soluções analíticas assim como em outros trabalhos da literatura. Quando comparado com FD, que não obteve convergência em um dos exemplos, o método CS demonstrou excelente estabilidade e precisão para uma larga faixa de tamanhos de incremento

    Analysis and Visualization of Higher-Order Tensors: Using the Multipole Representation

    Get PDF
    Materialien wie Kristalle, biologisches Gewebe oder elektroaktive Polymere kommen häufig in verschiedenen Anwendung, wie dem Prothesenbau oder der Simulation von künstlicher Muskulatur vor. Diese und viele weitere Materialien haben gemeinsam, dass sie unter gewissen Umständen ihre Form und andere Materialeigenschaften ändern. Um diese Veränderung beschreiben zu können, werden, abhängig von der Anwendung, verschiedene Tensoren unterschiedlicher Ordnung benutzt. Durch die Komplexität und die starke Abhängigkeit der Tensorbedeutung von der Anwendung, gibt es bisher kein Verfahren Tensoren höherer Ordnung darzustellen, welches standardmäßig benutzt wird. Auch bezogen auf einzelne Anwendungen gibt es nur sehr wenig Arbeiten, die sich mit der visuellen Darstellung dieser Tensoren auseinandersetzt. Diese Arbeit beschäftigt sich mit diesem Problem. Es werden drei verschiedene Methoden präsentiert, Tensoren höherer Ordnung zu analysieren und zu visualisieren. Alle drei Methoden basieren auf der sogenannte deviatorischen Zerlegung und der Multipoldarstellung. Mit Hilfe der Multipole können die Symmetrien des Tensors und damit des beschriebenen Materials bestimmt werden. Diese Eigenschaft wird in für die Visualisierung des Steifigkeitstensors benutzt. Die zweite Methode basiert direkt auf den Multipolen und kann damit beliebige Tensoren in drei Dimensionen darstellen. Dieses Verfahren wird anhand des Kopplungs Tensors, ein Tensor dritter Ordnung, vorgestellt. Die ersten zwei Verfahren sind lokale Glyph-basierte Verfahren. Das dritte Verfahren ist ein erstes globales Tensorvisualisierungsverfahren, welches Tensoren beliebiger Ordnung und Symmetry in drei Dimensionen mit Hilfe eines linienbasierten Verfahrens darstellt.Materials like crystals, biological tissue or electroactive polymers are frequently used in applications like prosthesis construction or the simulation of artificial musculature. These and many other materials have in common that they change their shape and other material properties under certain circumstances. To describe these changes, different tensors of different order, dependent of the application, are used. Due to the complexity and the strong dependency of the tensor meaning of the application, there is, by now, no visualization method that is used by default. Also for specific applications there are only a few methods that address the visual analysis of higher-order tensors. This work adresses this problem. Three different methods to analyse and visualize tensors of higher order will be provided. All three methods are based on the so called deviatoric decomposition and the multipole representation. Using the multipoles the symmetries of a tensor and, therefore, of the described material, can be calculated. This property is used to visualize the stiffness tensor. The second method uses the multipoles directly and can be used for each tensor of any order in three dimensions. This method is presented by analysing the third-order coupling tensor. These two techniques are glyph-based visualization methods. The third one, a line-based method, is, according to our knowledge, a first global visualization method that can be used for an arbitrary tensor in three dimensions

    Nanoindentation testing of soft polymers : computation, experiments and parameters identification

    Get PDF
    Since nanoindentation technique is able to measure the mechanical properties of extremely thin layers and small volumes with high resolution, it also became one of the important testing techniques for thin polymer layers and coatings. This dissertation is focusing on the characterization of polymers using nanoindentation, which is dealt with numerical computation, experiments and parameters identification. An analysis procedure is developed with the FEM based inverse method to evaluate the hyperelasticity and time-dependent properties. This procedure is firstly verified with a parameters re-identification concept. An important issue in this dissertation is to take the error contributions in real nanoindentation experiments into account. Therefore, the effects of surface roughness, adhesion force, friction and the real shape of the tip are involved in the numerical model to minimize the systematic error between the experimental responses and the numerical predictions. The effects are quantified as functions or models with corresponding parameters to be identified. Finally, data from uniaxial or biaxial tensile tests and macroindentation tests are taken into account. The comparison of these different loading situations provides a validation of the proposed material model and a deep insight into nanoindentation of polymers.Da Nanoindentation die Messung der mechanischen Eigenschaften von dünnen Schichten und kleinen Volumen mit hoher Auflösung ermöglicht, hat sich diese Messmethode zu einer der wichtigsten Testmethoden für dünne Polymerschichten und -beschichtungen entwickelt. Diese Dissertation konzentriert sich auf die Charakterisierung von Polymeren mittels Nanoindentation, die in Form von numerischen Berechnungen, Experimenten und Parameteridentifikationen behandelt wird. Es wurde ein Auswertungsverfahren mit einer FEM basierten inversen Methode zur Berechnung der Hyperelastizität und der zeitabhängigen Eigenschaften entwickelt. Dieses Verfahren wird zunächst mit einem Konzept der Parameter Re-Identifikation verifiziert. Fehlerquellen wie Oberflächenrauheit, Adhäsionskräfte, Reibung und die tatsächlichen Form der Indenterspitze werden in das numerische Modell eingebunden, um die Abweichungen der numerischen Vorhersagen von den experimentellen Ergebnissen zu minimieren. Diese Einflüsse werden als Funktionen oder Modelle mit dazugehörigen, zu identifizierenden Parametern, quantifiziert. Abschließend werden Messwerte aus uni- oder biaxialen Zugversuchen und Makroindentationsversuchen betrachtet. Der Vergleich dieser verschiedenen Belastungszustände liefert eine Bestätigung des vorgeschlagenen Materialmodells und verschafft einen tieferen Einblick in die bei der Nanoindentation von Polymeren ablaufenden Mechanismen
    • …
    corecore