7,165 research outputs found

    Objective and subjective assessment of perceptual factors in HDR content processing

    Get PDF
    The development of the display and camera technology makes high dynamic range (HDR) image become more and more popular. High dynamic range image give us pleasant image which has more details that makes high dynamic range image has good quality. This paper shows us the some important techniques in HDR images. And it also presents the work the author did. The paper is formed of three parts. The first part is an introduction of HDR image. From this part we can know why HDR image has good quality

    CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

    Full text link
    Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present \ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging \ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering' published in ECCV, 201

    Edge-preserving Multiscale Image Decomposition based on Local Extrema

    Get PDF
    We propose a new model for detail that inherently captures oscillations, a key property that distinguishes textures from individual edges. Inspired by techniques in empirical data analysis and morphological image analysis, we use the local extrema of the input image to extract information about oscillations: We define detail as oscillations between local minima and maxima. Building on the key observation that the spatial scale of oscillations are characterized by the density of local extrema, we develop an algorithm for decomposing images into multiple scales of superposed oscillations. Current edge-preserving image decompositions assume image detail to be low contrast variation. Consequently they apply filters that extract features with increasing contrast as successive layers of detail. As a result, they are unable to distinguish between high-contrast, fine-scale features and edges of similar contrast that are to be preserved. We compare our results with existing edge-preserving image decomposition algorithms and demonstrate exciting applications that are made possible by our new notion of detail

    Phase-Stretch Adaptive Gradient-Field Extractor (PAGE)

    Get PDF
    Emulated by an algorithm, certain physical phenomena have useful properties for image transformation. For example, image denoising can be achieved by propagating the image through the heat diffusion equation. Different stages of the temporal evolution represent a multiscale embedding of the image. Stimulated by the photonic time stretch, a realtime data acquisition technology, the Phase Stretch Transform (PST) emulates 2D propagation through a medium with group velocity dispersion, followed by coherent (phase) detection. The algorithm performs exceptionally well as an edge and texture extractor, in particular in visually impaired images. Here, we introduce a decomposition method that is metaphorically analogous to birefringent diffractive propagation. This decomposition method, which we term as Phase-stretch Adaptive Gradient-field Extractor (PAGE) embeds the original image into a set of feature maps that selects semantic information at different scale, orientation, and spatial frequency. We demonstrate applications of this algorithm in edge detection and extraction of semantic information from medical images, electron microscopy images of semiconductor circuits, optical characters and finger print images. The code for this algorithm is available here (https://github.com/JalaliLabUCLA)
    • …
    corecore