224 research outputs found

    Towards Fast and High-quality Biomedical Image Reconstruction

    Get PDF
    Department of Computer Science and EngineeringReconstruction is an important module in the image analysis pipeline with purposes of isolating the majority of meaningful information that hidden inside the acquired data. The term ???reconstruction??? can be understood and subdivided in several specific tasks in different modalities. For example, in biomedical imaging, such as Computed Tomography (CT), Magnetic Resonance Image (MRI), that term stands for the transformation from the, possibly fully or under-sampled, spectral domains (sinogram for CT and k-space for MRI) to the visible image domains. Or, in connectomics, people usually refer it to segmentation (reconstructing the semantic contact between neuronal connections) or denoising (reconstructing the clean image). In this dissertation research, I will describe a set of my contributed algorithms from conventional to state-of-the-art deep learning methods, with a transition at the data-driven dictionary learning approaches that tackle the reconstruction problems in various image analysis tasks.clos

    CUDA based Level Set Method for 3D Reconstruction of Fishes from Large Acoustic Data

    Get PDF
    Acoustic images present views of underwater dynamics, even in high depths. With multi-beam echo sounders (SONARs), it is possible to capture series of 2D high resolution acoustic images. 3D reconstruction of the water column and subsequent estimation of fish abundance and fish species identification is highly desirable for planning sustainable fisheries. Main hurdles in analysing acoustic images are the presence of speckle noise and the vast amount of acoustic data. This paper presents a level set formulation for simultaneous fish reconstruction and noise suppression from raw acoustic images. Despite the presence of speckle noise blobs, actual fish intensity values can be distinguished by extremely high values, varying exponentially from the background. Edge detection generally gives excessive false edges that are not reliable. Our approach to reconstruction is based on level set evolution using Mumford-Shah segmentation functional that does not depend on edges in an image. We use the implicit function in conjunction with the image to robustly estimate a threshold for suppressing noise in the image by solving a second differential equation. We provide details of our estimation of suppressing threshold and show its convergence as the evolution proceeds. We also present a GPU based streaming computation of the method using NVIDIA’s CUDA framework to handle large volume data-sets. Our implementation is optimised for memory usage to handle large volumes

    Two-Dimensional Discrete Wavelet Transform on Large Images for Hybrid Computing Architectures: GPU and CELL

    Full text link

    Introducing a precise system for determining volume percentages independent of scale thickness and type of flow regime

    Get PDF
    When fluids flow into the pipes, the materials in them cause deposits to form inside the pipes over time, which is a threat to the efficiency of the equipment and their depreciation. In the present study, a method for detecting the volume percentage of two-phase flow by considering the presence of scale inside the test pipe is presented using artificial intelligence networks. The method is non-invasive and works in such a way that the detector located on one side of the pipe absorbs the photons that have passed through the other side of the pipe. These photons are emitted to the pipe by a dual source of the isotopes barium-133 and cesium-137. The Monte Carlo N Particle Code (MCNP) simulates the structure, and wavelet features are extracted from the data recorded by the detector. These features are considered Group methods of data handling (GMDH) inputs. A neural network is trained to determine the volume percentage with high accuracy independent of the thickness of the scale in the pipe. In this research, to implement a precise system for working in operating conditions, different conditions, including different flow regimes and different scale thickness values as well as different volume percentages, are simulated. The proposed system is able to determine the volume percentages with high accuracy, regardless of the type of flow regime and the amount of scale inside the pipe. The use of feature extraction techniques in the implementation of the proposed detection system not only reduces the number of detectors, reduces costs, and simplifies the system but also increases the accuracy to a good extent

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin
    corecore