36,964 research outputs found

    Fast Generation of Random Spanning Trees and the Effective Resistance Metric

    Full text link
    We present a new algorithm for generating a uniformly random spanning tree in an undirected graph. Our algorithm samples such a tree in expected O~(m4/3)\tilde{O}(m^{4/3}) time. This improves over the best previously known bound of min(O~(mn),O(nω))\min(\tilde{O}(m\sqrt{n}),O(n^{\omega})) -- that follows from the work of Kelner and M\k{a}dry [FOCS'09] and of Colbourn et al. [J. Algorithms'96] -- whenever the input graph is sufficiently sparse. At a high level, our result stems from carefully exploiting the interplay of random spanning trees, random walks, and the notion of effective resistance, as well as from devising a way to algorithmically relate these concepts to the combinatorial structure of the graph. This involves, in particular, establishing a new connection between the effective resistance metric and the cut structure of the underlying graph

    Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Time

    Full text link
    We give a nearly linear time randomized approximation scheme for the Held-Karp bound [Held and Karp, 1970] for metric TSP. Formally, given an undirected edge-weighted graph GG on mm edges and ϵ>0\epsilon > 0, the algorithm outputs in O(mlog4n/ϵ2)O(m \log^4n /\epsilon^2) time, with high probability, a (1+ϵ)(1+\epsilon)-approximation to the Held-Karp bound on the metric TSP instance induced by the shortest path metric on GG. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m2log2(m)/ϵ2)O(m^2 \log^2(m)/\epsilon^2) running time achieved previously by Garg and Khandekar. The LP solution can be used to obtain a fast randomized (32+ϵ)\big(\frac{3}{2} + \epsilon\big)-approximation for metric TSP which improves upon the running time of previous implementations of Christofides' algorithm

    Efficient, Superstabilizing Decentralised Optimisation for Dynamic Task Allocation Environments

    No full text
    Decentralised optimisation is a key issue for multi-agent systems, and while many solution techniques have been developed, few provide support for dynamic environments, which change over time, such as disaster management. Given this, in this paper, we present Bounded Fast Max Sum (BFMS): a novel, dynamic, superstabilizing algorithm which provides a bounded approximate solution to certain classes of distributed constraint optimisation problems. We achieve this by eliminating dependencies in the constraint functions, according to how much impact they have on the overall solution value. In more detail, we propose iGHS, which computes a maximum spanning tree on subsections of the constraint graph, in order to reduce communication and computation overheads. Given this, we empirically evaluate BFMS, which shows that BFMS reduces communication and computation done by Bounded Max Sum by up to 99%, while obtaining 60-88% of the optimal utility

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation
    corecore