97 research outputs found

    08221 Abstracts Collection -- Geometric Modeling

    Get PDF
    From May 26 to May 30 2008 the Dagstuhl Seminar 08221 ``Geometric Modeling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    PARAMETRIZATION AND SHAPE RECONSTRUCTION TECHNIQUES FOR DOO-SABIN SUBDIVISION SURFACES

    Get PDF
    This thesis presents a new technique for the reconstruction of a smooth surface from a set of 3D data points. The reconstructed surface is represented by an everywhere -continuous subdivision surface which interpolates all the given data points. And the topological structure of the reconstructed surface is exactly the same as that of the data points. The new technique consists of two major steps. First, use an efficient surface reconstruction method to produce a polyhedral approximation to the given data points. Second, construct a Doo-Sabin subdivision surface that smoothly passes through all the data points in the given data set. A new technique is presented for the second step in this thesis. The new technique iteratively modifies the vertices of the polyhedral approximation 1CM until a new control meshM, whose Doo-Sabin subdivision surface interpolatesM, is reached. It is proved that, for any mesh M with any size and any topology, the iterative process is always convergent with Doo-Sabin subdivision scheme. The new technique has the advantages of both a local method and a global method, and the surface reconstruction process can reproduce special features such as edges and corners faithfully

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach

    Geometric Structures on Matrix-valued Subdivision Schemes

    Get PDF
    Surface subdivision schemes are used in computer graphics to generate visually smooth surfaces of arbitrary topology. Applications in computer graphics utilize surface normals and curvature. In this paper, formulas are obtained for the first and second partial derivatives of limit surfaces formed using 1-ring subdivision schemes that have 2 by 2 matrix-valued masks. Consequently, surface normals, and Gaussian and mean curvatures can be derived. Both quadrilateral and triangular schemes are considered and for each scheme both interpolatory and approximating schemes are examined. In each case, we look at both extraordinary and regular vertices. Every 3-D vertex of the refinement polyhedrons also has what is called a corresponding “shape vertex.” The partial derivative formulas consist of linear combinations of surrounding polyhedron vertices as well as their corresponding shape vertices. We are able to derive detailed information on the matrix-valued masks and about the left eigenvectors of the (regular) subdivision matrix. Local parameterizations are done using these left eigenvectors and final formulas for partial derivatives are obtained after we secure detailed information about right eigenvectors of the subdivision matrix. Using specific subdivision schemes, unit normals so obtained are displayed. Also, formulas for initial shape vertices are postulated using discrete unit normals to our original polyhedron. These formulas are tested for reasonableness on surfaces using specific subdivision schemes. Obtaining a specified unit normal at a surface point is examined by changing only these shape vertices. We then describe two applications involving surface normals in the field of computer graphics that can use our results

    Nitsche’s method for two and three dimensional NURBS patch coupling

    Get PDF
    We present a Nitche’s method to couple non-conforming two and three-dimensional NURBS (Non Uniform Rational B-splines) patches in the context of isogeometric analysis (IGA). We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications

    Least Squares Subdivision Surfaces

    Get PDF
    International audienceThe usual approach to design subdivision schemes for curves and surfaces basically consists in combining proper rules for regular configurations, with some specific heuristics to handle extraordinary vertices. In this paper, we introduce an alternative approach, called Least Squares Subdivision Surfaces (LS^3), where the key idea is to iteratively project each vertex onto a local approximation of the current polygonal mesh. While the resulting procedure have the same complexity as simpler subdivision schemes, our method offers much higher visual quality, especially in the vicinity of extraordinary vertices. Moreover, we show it can be easily generalized to support boundaries and creases. The fitting procedure allows for a local control of the surface from the normals, making LS^3 very well suited for interactive freeform modeling applications. We demonstrate our approach on diadic triangular and quadrangular refinement schemes, though it can be applied to any splitting strategies
    • …
    corecore