414 research outputs found

    Articulatory-WaveNet: Deep Autoregressive Model for Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-Articulatory Inversion, the estimation of articulatory kinematics from speech, is an important problem which has received significant attention in recent years. Estimated articulatory movements from such models can be used for many applications, including speech synthesis, automatic speech recognition, and facial kinematics for talking-head animation devices. Knowledge about the position of the articulators can also be extremely useful in speech therapy systems and Computer-Aided Language Learning (CALL) and Computer-Aided Pronunciation Training (CAPT) systems for second language learners. Acoustic-to-Articulatory Inversion is a challenging problem due to the complexity of articulation patterns and significant inter-speaker differences. This is even more challenging when applied to non-native speakers without any kinematic training data. This dissertation attempts to address these problems through the development of up-graded architectures for Articulatory Inversion. The proposed Articulatory-WaveNet architecture is based on a dilated causal convolutional layer structure that improves the Acoustic-to-Articulatory Inversion estimated results for both speaker-dependent and speaker-independent scenarios. The system has been evaluated on the ElectroMagnetic Articulography corpus of Mandarin Accented English (EMA-MAE) corpus, consisting of 39 speakers including both native English speakers and Mandarin accented English speakers. Results show that Articulatory-WaveNet improves the performance of the speaker-dependent and speaker-independent Acoustic-to-Articulatory Inversion systems significantly compared to the previously reported results

    Voice Conversion

    Get PDF

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Temporally Varying Weight Regression for Speech Recognition

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Nonlinear Mixture Autoregressive Model For Speaker Verification

    Get PDF
    In this work, we apply a nonlinear mixture autoregressive (MixAR) model to supplant the Gaussian mixture model for speaker verification. MixAR is a statistical model that is a probabilistically weighted combination of components, each of which is an autoregressive filter in addition to a mean. The probabilistic mixing and the datadependent weights are responsible for the nonlinear nature of the model. Our experiments with synthetic as well as real speech data from standard speech corpora show that MixAR model outperforms GMM, especially under unseen noisy conditions. Moreover, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM using static as well as delta features. Also, MixAR suffered less from overitting issues than GMM when training data was sparse. However, MixAR performance deteriorated more quickly than that of GMM when evaluation data duration was reduced. This could pose limitations on the required minimum amount of evaluation data when using MixAR model for speaker verification

    Adaptation Algorithms for Neural Network-Based Speech Recognition: An Overview

    Get PDF
    We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms, based on relative error rate reductions as reported in the literature.Comment: Submitted to IEEE Open Journal of Signal Processing. 30 pages, 27 figure
    corecore