73 research outputs found

    Analog dithering techniques for highly linear and efficient transmitters

    Get PDF
    The current thesis is about investigation of new methods and techniques to be able to utilize the switched mode amplifiers, for linear and efficient applications. Switched mode amplifiers benefit from low overlap between the current and voltage wave forms in their output terminals, but they seriously suffer from nonlinearity. This makes it impossible to use them to amplify non-constant envelope message signals, where very high linearity is expected. In order to do that, dithering techniques are studied and a full linearity analysis approach is developed, by which the linearity performance of the dithered amplifier can be analyzed, based on the dithering level and frequency. The approach was based on orthogonalization of the equivalent nonlinearity and is capable of prediction of both co-channel and adjacent channel nonlinearity metrics, for a Gaussian complex or real input random signal. Behavioral switched mode amplifier models are studied and new models are developed, which can be utilized to predict the nonlinear performance of the dithered power amplifier, including the nonlinear capacitors effects. For HFD application, self-oscillating and asynchronous sigma delta techniques are currently used, as pulse with modulators (PWM), to encode a generic RF message signal, on the duty cycle of an output pulse train. The proposed models and analysis techniques were applied to this architecture in the first phase, and the method was validated with measurement on a prototype sample, realized in 65 nm TSMC CMOS technology. Afterwards, based on the same dithering phenomenon, a new linearization technique was proposed, which linearizes the switched mode class D amplifier, and at the same time can reduce the reactive power loss of the amplifier. This method is based on the dithering of the switched mode amplifier with frequencies lower than the band-pass message signal and is called low frequency dithering (LFD). To test this new technique, two test circuits were realized and the idea was applied to them. Both of the circuits were of the hard nonlinear type (class D) and are integrated CMOS and discrete LDMOS technologies respectively. The idea was successfully tested on both test circuits and all of the linearity metric predictions for a digitally modulated RF signal and a random signal were compared to the measurements. Moreover a search method to find the optimum dither frequency was proposed and validated. Finally, inspired by averaging interpretation of the dithering phenomenon, three new topologies were proposed, which are namely DLM, RF-ADC and area modulation power combining, which are all nonlinear systems linearized with dithering techniques. A new averaging method was developed and used for analysis of a Gilbert cell mixer topology, which resulted in a closed form relationship for the conversion gain, for long channel devices

    mm-Wave Data Transmission and Measurement Techniques: A Holistic Approach

    Get PDF
    The ever-increasing demand on data services places unprecedented technical requirements on networks capacity. With wireless systems having significant roles in broadband delivery, innovative approaches to their development are imperative. By leveraging new spectral resources available at millimeter-wave (mm-wave) frequencies, future systems can utilize new signal structures and new system architectures in order to achieve long-term sustainable solutions.This thesis proposes the holistic development of efficient and cost-effective techniques and systems which make high-speed data transmission at mm-wave feasible. In this paradigm, system designs, signal processing, and measurement techniques work toward a single goal; to achieve satisfactory system level key performance indicators (KPIs). Two intimately-related objectives are simultaneously addressed: the realization of efficient mm-wave data transmission and the development of measurement techniques to enable and assist the design and evaluation of mm-wave circuits.The standard approach to increase spectral efficiency is to increase the modulation order at the cost of higher transmission power. To improve upon this, a signal structure called spectrally efficient frequency division multiplexing (SEFDM) is utilized. SEFDM adds an additional dimension of continuously tunable spectral efficiency enhancement. Two new variants of SEFDM are implemented and experimentally demonstrated, where both variants are shown to outperform standard signals.A low-cost low-complexity mm-wave transmitter architecture is proposed and experimentally demonstrated. A simple phase retarder predistorter and a frequency multiplier are utilized to successfully generate spectrally efficient mm-wave signals while simultaneously mitigating various issues found in conventional mm-wave systems.A measurement technique to characterize circuits and components under antenna array mutual coupling effects is proposed and demonstrated. With minimal setup requirement, the technique effectively and conveniently maps prescribed transmission scenarios to the measurement environment and offers evaluations of the components in terms of relevant KPIs in addition to conventional metrics.Finally, a technique to estimate transmission and reflection coefficients is proposed and demonstrated. In one variant, the technique enables the coefficients to be estimated using wideband modulated signals, suitable for implementation in measurements performed under real usage scenarios. In another variant, the technique enhances the precision of noisy S-parameter measurements, suitable for characterizations of wideband mm-wave components

    Automatic Optimization of Input Split and Bias Voltage in Digitally Controlled Dual-Input Doherty RF PAs

    Get PDF
    Digitally controlled Dual-Input Doherty Power Amplifiers (DIDPAs) are becoming increasingly popular due to the flexible input signal splitting between the main and auxiliary stages. Nevertheless, the presence of many degrees of freedom, e.g., input amplitude split and phase displacement as well as biasing for multiple stages, often involves inefficient trial-and-error procedures to reach a suitable PA performance. This article presents automated parameter setting based on coordinate descent or Bayesian optimizations, demonstrating an improvement in the performance in terms of RF output power and power-added efficiency (PAE) in the presence of broadband-modulated signals, yet maintaining suitable linear behavior for, e.g., communications applications

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    A fast engineering approach to high efficiency power amplifier linearization for avionics applications

    Get PDF
    This PhD thesis provides a fast engineering approach to the design of digital predistortion (DPD) linearizers from several perspectives: i) enhancing the off-line training performance of open-loop DPD, ii) providing robustness and reducing the computational complexity of the parameters identification subsystem and, iii) importing machine learning techniques to favor the automatic tuning of power amplifiers (PAs) and DPD linearizers with several free-parameters to maximize power efficiency while meeting the linearity specifications. One of the essential parts of unmanned aerial vehicles (UAV) is the avionics, being the radio control one of the earliest avionics present in the UAV. Unlike the control signal, for transferring user data (such as images, video, etc.) real-time from the drone to the ground station, large transmission rates are required. The PA is a key element in the transmitter chain to guarantee the data transmission (video, photo, etc.) over a long range from the ground station. The more linear output power, the better the coverage or alternatively, with the same coverage, better SNR allows the use of high-order modulation schemes and thus higher transmission rates are achieved. In the context of UAV wireless communications, the power consumption, size and weight of the payload is of significant importance. Therefore, the PA design has to take into account the compromise among bandwidth, output power, linearity and power efficiency (very critical in battery-supplied devices). The PA can be designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal with this inherent trade-off is to design high efficient amplification topologies and let the PA linearizers take care of the linearity requirements. Among the linearizers, DPD linearization is the preferred solution to both academia and industry, for its high flexibility and linearization performance. In order to save as many computational and power resources as possible, the implementation of an open-loop DPD results a very attractive solution for UAV applications. This thesis contributes to the PA linearization, especially on off-line training for open-loop DPD, by presenting two different methods for reducing the design and operating costs of an open-loop DPD, based on the analysis of the DPD function. The first method focuses on the input domain analysis, proposing mesh-selecting (MeS) methods to accurately select the proper samples for a computationally efficient DPD parameter estimation. Focusing in the MeS method with better performance, the memory I-Q MeS method is combined with feature extraction dimensionality reduction technique to allow a computational complexity reduction in the identification subsystem by a factor of 65, in comparison to using the classical QR-LS solver and consecutive samples selection. In addition, the memory I-Q MeS method has been proved to be of crucial interest when training artificial neural networks (ANN) for DPD purposes, by significantly reducing the ANN training time. The second method involves the use of machine learning techniques in the DPD design procedure to enlarge the capacity of the DPD algorithm when considering a high number of free parameters to tune. On the one hand, the adaLIPO global optimization algorithm is used to find the best parameter configuration of a generalized memory polynomial behavioral model for DPD. On the other hand, a methodology to conduct a global optimization search is proposed to find the optimum values of a set of key circuit and system level parameters, that properly combined with DPD linearization and crest factor reduction techniques, can exploit at best dual-input PAs in terms of maximizing power efficiency along wide bandwidths while being compliant with the linearity specifications. The advantages of these proposed techniques have been validated through experimental tests and the obtained results are analyzed and discussed along this thesis.Aquesta tesi doctoral proporciona unes pautes per al disseny de linealitzadors basats en predistorsió digital (DPD) des de diverses perspectives: i) millorar el rendiment del DPD en llaç obert, ii) proporcionar robustesa i reduir la complexitat computacional del subsistema d'identificació de paràmetres i, iii) incorporació de tècniques d'aprenentatge automàtic per afavorir l'auto-ajustament d'amplificadors de potència (PAs) i linealitzadors DPD amb diversos graus de llibertat per poder maximitzar l’eficiència energètica i al mateix temps acomplir amb les especificacions de linealitat. Una de les parts essencials dels vehicles aeris no tripulats (UAV) _es l’aviònica, sent el radiocontrol un dels primers sistemes presents als UAV. Per transferir dades d'usuari (com ara imatges, vídeo, etc.) en temps real des del dron a l’estació terrestre, es requereixen taxes de transmissió grans. El PA _es un element clau de la cadena del transmissor per poder garantir la transmissió de dades a grans distàncies de l’estació terrestre. A major potència de sortida, més cobertura o, alternativament, amb la mateixa cobertura, millor relació senyal-soroll (SNR) la qual cosa permet l’ús d'esquemes de modulació d'ordres superiors i, per tant, aconseguir velocitats de transmissió més altes. En el context de les comunicacions sense fils en UAVs, el consum de potència, la mida i el pes de la càrrega útil són de vital importància. Per tant, el disseny del PA ha de tenir en compte el compromís entre ample de banda, potència de sortida, linealitat i eficiència energètica (molt crític en dispositius alimentats amb bateries). El PA es pot dissenyar per maximitzar la seva eficiència energètica o la seva linealitat, però no totes dues. Per tant, per afrontar aquest compromís s'utilitzen topologies amplificadores d'alta eficiència i es deixa que el linealitzador s'encarregui de garantir els nivells necessaris de linealitat. Entre els linealitzadors, la linealització DPD és la solució preferida tant per al món acadèmic com per a la indústria, per la seva alta flexibilitat i rendiment. Per tal d'estalviar tant recursos computacionals com consum de potència, la implementació d'un DPD en lla_c obert resulta una solució molt atractiva per a les aplicacions UAV. Aquesta tesi contribueix a la linealització del PA, especialment a l'entrenament fora de línia de linealitzadors DPD en llaç obert, presentant dos mètodes diferents per reduir el cost computacional i augmentar la fiabilitat dels DPDs en llaç obert. El primer mètode se centra en l’anàlisi de l’estadística del senyal d'entrada, proposant mètodes de selecció de malla (MeS) per seleccionar les mostres més significatives per a una estimació computacionalment eficient dels paràmetres del DPD. El mètode proposat IQ MeS amb memòria es pot combinar amb tècniques de reducció del model del DPD i d'aquesta manera poder aconseguir una reducció de la complexitat computacional en el subsistema d’identificació per un factor de 65, en comparació amb l’ús de l'algoritme clàssic QR-LS i selecció de mostres d'entrenament consecutives. El segon mètode consisteix en l’ús de tècniques d'aprenentatge automàtic pel disseny del DPD quan es considera un gran nombre de graus de llibertat (paràmetres) per sintonitzar. D'una banda, l'algorisme d’optimització global adaLIPO s'utilitza per trobar la millor configuració de paràmetres d'un model polinomial amb memòria generalitzat per a DPD. D'altra banda, es proposa una estratègia per l’optimització global d'un conjunt de paràmetres clau per al disseny a nivell de circuit i sistema, que combinats amb linealització DPD i les tècniques de reducció del factor de cresta, poden maximitzar l’eficiència de PAs d'entrada dual de gran ample de banda, alhora que compleixen les especificacions de linealitat. Els avantatges d'aquestes tècniques proposades s'han validat mitjançant proves experimentals i els resultats obtinguts s'analitzen i es discuteixen al llarg d'aquesta tesi

    Digital assistance design for analog systems : digital baseband for outphasing power amplifiers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 145-150).Digital assistance is among many aspects that can be leveraged to help analog/mixed-signal designers keep up with the technology scaling. It usually takes the form of predistorter or compensator in an analog/mixed-signal system and helps compensate the nonidealities in the system. Digital assistance takes advantage of the process scaling with faster speed and a higher level of integration. When a digital system is co-optimized with system modeling techniques, digital assistance usually becomes a key enabling block for the high performance of the overall system. This thesis presents the design of digital assistances through the digital baseband design for outphasing power amplifiers. In the digital baseband design, this thesis conveys two major points: the importance of the use of the reduced-complexity system modeling techniques, and the communications between hardware design and system modeling. These points greatly help the success in the design of the energy-efficient baseband. The first part of the baseband design is to realize the nonlinear signal processing unit required by the modulation scheme. Conventional approaches of implementing this functionality do not scale well to meet the throughput, area and energy-efficiency targets. We propose a novel fixed-point piece-wise linear approximation technique for the nonlinear function computations involved in the signal processing unit. The new technique allows us to achieve an energy and area-efficient design with a throughput of 3.4Gsamples/s. Compared to the projected previous designs, our design shows 2x improvement in energy-efficiency and 25x in area-efficiency. The second part of the baseband design devotes to the nonlinear compensator design, aiming to improve the linearity performance of the outphasing power amplifier. We first explore the feasibility of a working compensator by use of an off-line iterative solving scheme. With the confirmation that a compensator does exist, we analyze the structure of the nonlinear baseband-equivalent PA system and create a dynamical real-time compensator model. The resulting compensator provides the overall PA system with around 10dB improvement in ACPR and up to 2.5% in EVM.by Yan Li.Ph.D

    A single propagation path multimode CMOS power amplifier based on the stacked topology

    Get PDF
    Orientador: Bernardo Rego Barros de Almeida LeiteCoorientador: André Augusto MarianoTese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica. Defesa : Curitiba, 28/06/2021Inclui referências: p. 54-56Resumo: Esta tese apresenta o projeto de um amplificador de potências (PA) prova-de-conceito com quatro perfis de eficiência de um caminho único de propagação, realizado com tecnologia CMOS 130 nm e operando em 2,4 GHz. Esse circuito se baseia em dois conceitos: na seleção da região de operação de transistores (triodo ou saturação) e na alteração da tensão de alimentação de uma arquitetura empilhada modificada. Nos modos de alta e baixa potência (todos transistores em saturação e um transistor em saturação e três em triodo, respectivamente), o ponto de compressão de 1 dB referenciado à saída (OCP1dB) e a eficiência adicionada à potência (PAE) no OCP1dB resultantes de simulação pós-layout são de 19,9 dBm e 25,7%; de 15,1 dBm e 20,5%, respectivamente. Para validar a operação desse PA, quatro tipos de sinais do padrão IEEE 802.11ax foram testados. Para sinais menos complexos (16 QAM) o PA pode operar sem que a ultrapasse os limites impostos pela máscara do padrão até uma potencia de saída (pout) de 17,8 dBm; para sinais mais complexos (1024 QAM) o PA pode operar até uma pout de 8,5 dBm. Por um lado, o circuito apresentado é capaz de ocupar uma pequena área, o que é uma vantagem em processos escaláveis, tais como o CMOS. Por outro lado, a complexidade de design é elevada, tendo em vista que a otimização de eficiência e potência é também função da interação entre os modos de operação.Abstract: This thesis presents the design of a proof-of-concept single propagation path four-mode power amplifier (PA) in 130 nm CMOS operating at 2.4 GHz. It is based on two concepts: the selection of the transistor's operation region (triode or saturation) and on the scaling of supply voltage of a modified stacked architecture. In high and low power modes (all transistors in saturation and one transistor in saturation and three in triode, respectively), the output-referred 1 dB compression point (OCP1dB) and the power added efficiency (PAE) in OCP1dB post-layout simulation results are 19.9 dBm and 25.7%; 15.1 dBm and 20.5%, respectively. To validate this PA's operation capability, four types of IEEE 802.11ax signals were tested. For less complex signals (16 QAM) the PA can operate without exceeding the limits imposed by the standard's mask up to an output power (pout) of 17.8 dBm; for more complex signals (1024 QAM) the PA can operate up to a pout of 8.5 dBm. On the one hand, the proposed circuit is capable of occupying a small area, which is an advantage in scalable processes, such as CMOS is. On the other hand, its design is complex, as optimization of efficiency and power is also a function of the interaction among operation modes

    Impacto e compensação da largura de banda vídeo em amplificadores de potência de elevado rendimento

    Get PDF
    The aim of this work is to determine, quantify and model the performance degradation of wideband power amplifiers when subject to concurrent multiband excitation, with a particular focus on the average efficiency variation. The origins of this degradation are traced to two main transistor properties: the output baseband current generation by the nonlinear transconductance, and the input baseband current generation by the nonlinear gate-source capacitance variation. Each mechanism is analised separately, first by providing a qualitative and intuitive explanation of the processes that lead to the observed efficiency degradation, and then by deriving models that allow the prediction of the average efficiency dependence with the input signal bandwidth. The resulting knowledge was used to improve matching network design, in order to optimize baseband impedance terminations and prevent the efficiency degradation. The derived models were experimentally validated with several PA prototypes implemented with Gallium Nitride HEMT devices, using both conventional and optimized baseband impedance matching networks, achieving over 400MHz instantaneous bandwidth with uncompromised efficiency. The consolidation of the wideband degradation mechanisms described in this work are an important step for modelling and design of wideband, high-efficiency power amplifiers in current and future concurrent multi-band communication systems.O objetivo deste trabalho é determinar, quantificar e modelar a degradação do desempenho de amplificadores de banda-larga quando submetidos a excitação multi-banda concorrente, com particular ênfase na variação do rendimento energético. As origens desta degradação são devidas a duas das principais propriedades do transístor: a geração de corrente em banda-base na saída pela variação não-linear da transcondutância, e a geração de corrente de banda-base na entrada pela variação não-linear da capacidade interna porta-fonte. Cada um destes mecanismos é analisado isoladamente, primeiro por uma explicação qualitativa e intuitiva dos processos que levam à degradação de eficiência observada e, em seguida, através da derivação de modelos que permitem a previsão da degradação do rendimento médio em função da largura de banda do sinal de entrada. O conhecimento resultante foi utilizado para melhorar o desenvolvimento de malhas de adaptação, por forma a otimizar as terminações de impedância em banda-base e prevenir a degradação do rendimento. Os modelos desenvolvidos foram validados experimentalmente em vários amplificadores de potência implementados com transístores de tecnologia GaN HEMT, utilizando malhas de adaptação convencionais e otimizadas, onde se obteve 400MHz de largura de banda instantânea sem degradação do rendimento. A consolidação dos mecanismos de degradação descritos neste trabalho são um importante passo para a modelação e projeto de amplificadores de elevado rendimento e largura-debanda para os sistemas de comunicação multi-banda concorrente convencionais e do futuro.Programa Doutoral em Engenharia Eletrotécnic

    High-Power Microwave/ Radio-Frequency Components, Circuits, and Subsystems for Next-Generation Wireless Radio Front-Ends

    Get PDF
    As the wireless communication systems evolve toward the future generation, intelligence will be the main signature/trend, well known as the concepts of cognitive and software-defined radios which offer ultimate data transmission speed, spectrum access, and user capacity. During this evolution, the human society may experience another round of `information revolution\u27. However, one of the major bottlenecks of this promotion lies in hardware realization, since all the aforementioned intelligent systems are required to cover a broad frequency range to support multiple communication bands and dissimilar standards. As the essential part of the hardware, power amplifiers (PAs) capable of operating over a wide bandwidth have been identified as the key enabling technology. This dissertation focuses on novel methodologies for designing and realizing broadband high-power PAs, their integration with high-quality-factor (high-Q) tunable filters, and relevant investigations on the reliabilities of these tunable devices. It can be basically divided into three major parts: 1.Broadband High-Efficiency Power Amplifiers. Obtaining high PA efficiency over a wide bandwidth is very challenging, because of the difficulty of performing broadband multi-harmonic matching. However, high efficiency is the critical feature for high-performance PAs due to the ever-increasing demands for environmental friendliness, energy saving, and longer battery life. In this research, novel design methodologies of broad-band highly efficient PAs are proposed, including the first-ever mode-transferring PA theory, novel matching network topology, and wideband reconfigurable PA architecture. These techniques significantly advance the state-of-the-art in terms of bandwidth and efficiency. 2.Co-Design of PAs and High-Q Tunable Filters. When implementing the intelligent communication systems, the conventional approach based on independent RF design philosophy suffers from many inherent defects, since no global optimization is achieved leading to degraded overall performance. An attractive method to solve these difficulties is to co-design critical modules of the transceiver chain. This dissertation presents the first-ever co-design of PAs and tunable filters, in which the redundant inter-module matching is entirely eliminated, leading to minimized size & cost and maximized overall performance. The saved hardware resources can be further transferred to enhance system functionalities. Moreover, we also demonstrate that co-design of PAs and filters can lead to more functionalities/benefits for the wireless systems, e.g. efficient and linear amplification of dual-carrier (or multi-carrier) signals. 3.High-Power/Non-Linear Study on Tunable Devices. High-power limitation/power handling is an everlasting theme of tunable devices, as it determines the operational life and is the threshold for actual industrial applications. Under high-power operation, the high RF voltage can lead to failures like tuners\u27 mechanical deflections and gas discharge in the small air spacing of the cavity. These two mechanisms are studied independently with their instantaneous and long-term effects on the device performance. In addition, an anti-biased topology of electrostatic RF MEMS varactors and tunable filters is proposed and experimentally validated for reducing the non-linear effect induced by bias-noise. These investigations will enlighten the designers on how to avoid and/or minimize the non-ideal effects, eventually leading to longer life cycle and performance sustainability of the tunable devices
    corecore