62,426 research outputs found

    An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums

    Get PDF
    Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient \textbf{A}ccelerated \textbf{D}ecentralized stochastic algorithm for \textbf{F}inite \textbf{S}ums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On nn machines, ADFS learns from nmnm samples in the same time it takes optimal algorithms to learn from mm samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples mm, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.Comment: Code available in source files. arXiv admin note: substantial text overlap with arXiv:1901.0986

    Stochastic Variance Reduction Methods for Saddle-Point Problems

    Get PDF
    We consider convex-concave saddle-point problems where the objective functions may be split in many components, and extend recent stochastic variance reduction methods (such as SVRG or SAGA) to provide the first large-scale linearly convergent algorithms for this class of problems which is common in machine learning. While the algorithmic extension is straightforward, it comes with challenges and opportunities: (a) the convex minimization analysis does not apply and we use the notion of monotone operators to prove convergence, showing in particular that the same algorithm applies to a larger class of problems, such as variational inequalities, (b) there are two notions of splits, in terms of functions, or in terms of partial derivatives, (c) the split does need to be done with convex-concave terms, (d) non-uniform sampling is key to an efficient algorithm, both in theory and practice, and (e) these incremental algorithms can be easily accelerated using a simple extension of the "catalyst" framework, leading to an algorithm which is always superior to accelerated batch algorithms.Comment: Neural Information Processing Systems (NIPS), 2016, Barcelona, Spai

    Herding as a Learning System with Edge-of-Chaos Dynamics

    Full text link
    Herding defines a deterministic dynamical system at the edge of chaos. It generates a sequence of model states and parameters by alternating parameter perturbations with state maximizations, where the sequence of states can be interpreted as "samples" from an associated MRF model. Herding differs from maximum likelihood estimation in that the sequence of parameters does not converge to a fixed point and differs from an MCMC posterior sampling approach in that the sequence of states is generated deterministically. Herding may be interpreted as a"perturb and map" method where the parameter perturbations are generated using a deterministic nonlinear dynamical system rather than randomly from a Gumbel distribution. This chapter studies the distinct statistical characteristics of the herding algorithm and shows that the fast convergence rate of the controlled moments may be attributed to edge of chaos dynamics. The herding algorithm can also be generalized to models with latent variables and to a discriminative learning setting. The perceptron cycling theorem ensures that the fast moment matching property is preserved in the more general framework

    Minimizing Finite Sums with the Stochastic Average Gradient

    Get PDF
    We propose the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method's iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradient values the SAG method achieves a faster convergence rate than black-box SG methods. The convergence rate is improved from O(1/k^{1/2}) to O(1/k) in general, and when the sum is strongly-convex the convergence rate is improved from the sub-linear O(1/k) to a linear convergence rate of the form O(p^k) for p \textless{} 1. Further, in many cases the convergence rate of the new method is also faster than black-box deterministic gradient methods, in terms of the number of gradient evaluations. Numerical experiments indicate that the new algorithm often dramatically outperforms existing SG and deterministic gradient methods, and that the performance may be further improved through the use of non-uniform sampling strategies.Comment: Revision from January 2015 submission. Major changes: updated literature follow and discussion of subsequent work, additional Lemma showing the validity of one of the formulas, somewhat simplified presentation of Lyapunov bound, included code needed for checking proofs rather than the polynomials generated by the code, added error regions to the numerical experiment
    • …
    corecore