1,646 research outputs found

    Scanner Invariant Representations for Diffusion MRI Harmonization

    Get PDF
    Purpose: In the present work we describe the correction of diffusion-weighted MRI for site and scanner biases using a novel method based on invariant representation. Theory and Methods: Pooled imaging data from multiple sources are subject to variation between the sources. Correcting for these biases has become very important as imaging studies increase in size and multi-site cases become more common. We propose learning an intermediate representation invariant to site/protocol variables, a technique adapted from information theory-based algorithmic fairness; by leveraging the data processing inequality, such a representation can then be used to create an image reconstruction that is uninformative of its original source, yet still faithful to underlying structures. To implement this, we use a deep learning method based on variational auto-encoders (VAE) to construct scanner invariant encodings of the imaging data. Results: To evaluate our method, we use training data from the 2018 MICCAI Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our proposed method shows improvements on independent test data relative to a recently published baseline method on each subtask, mapping data from three different scanning contexts to and from one separate target scanning context. Conclusion: As imaging studies continue to grow, the use of pooled multi-site imaging will similarly increase. Invariant representation presents a strong candidate for the harmonization of these data

    Random noise in Diffusion Tensor Imaging, its Destructive Impact and Some Corrections

    Get PDF
    The empirical origin of random noise is described, its influence on DTI variables is illustrated by a review of numerical and in vivo studies supplemented by new simulations investigating high noise levels. A stochastic model of noise propagation is presented to structure noise impact in DTI. Finally, basics of voxelwise and spatial denoising procedures are presented. Recent denoising procedures are reviewed and consequences of the stochastic model for convenient denoising strategies are discussed

    A Nash Game Based Variational Model For Joint Image Intensity Correction And Registration To Deal With Varying Illumination

    Get PDF
    Registration aligns features of two related images so that information can be compared and/or fused in order to highlight differences and complement information. In real life images where bias field is present, this undesirable artefact causes inhomogeneity of image intensities and hence leads to failure or loss of accuracy of registration models based on minimization of the differences of the two image intensities. Here, we propose a non-linear variational model for joint image intensity correction (illumination and translation) and registration and reformulate it in a game framework. While a non-potential game offers flexible reformulation and can lead to better fitting errors, proving the solution existence for a non-convex model is non-trivial. Here we establish an existence result using the Schauder's fixed point theorem. To solve the model numerically, we use an alternating minimization algorithm in the discrete setting. Finally numerical results can show that the new model outperforms existing models

    Active contours for intensity inhomogeneous image segmentation

    Get PDF
    La “inhomogeneidad” (falta d'homogeneïtat) d'intensitat és un problema ben conegut en la segmentació d'imatges, la qual cosa afecta la precisió dels mètodes de segmentació basats en la intensitat. En aquesta tesi, es proposen mètodes de contorn actiu basat en fronteres i regions per segmentar imatges inhomogènies. En primer lloc, s'ha proposat un mètode de contorn actiu basat en fronteres mitjançant Diferència de Gaussianes (DoG), que ajuda a segmentar l'estructura global de la imatge. En segon lloc, hem proposat un mètode de contorn actiu basat en regions per corregir i segmentar imatges inhomogènies. S'ha utilitzat un nucli de transformació de fase (phase stretch transform - PST) per calcular noves intensitats mitjanes i camps de polarització, que s'empren per definir una imatge ajustada de polarització. En tercer lloc, s'ha proposat un altre mètode de contorn actiu basat en regions utilitzant un funcional d'energia basat en imatges ajustades locals i globals. El camp de polarització s'aproxima amb una distribució Gaussiana i el biaix de les regions no homogènies es corregeix dividint la imatge original pel camp aproximat de polarització. Finalment, s'ha proposat un mètode híbrid de contorns actius multifàsic (quatre fases) per dividir una imatge de RM cerebral en tres regions diferents: matèria blanca (WM), matèria grisa (GM) i líquid cefaloraquidi (CSF). En aquest treball, també s'ha dissenyat un mètode de post-processat (correcció de píxels) per millorar la precisió de les regions WM, GM i CSF segmentades. S'han utilitzat resultats experimentals tant amb imatges sintètiques com amb imatges reals de RM del cervell per a una comparació quantitativa i qualitativa amb mètodes de contorns actius de l'estat de l'art per mostrar els avantatges de les tècniques de segmentació proposades.La “inhomogeneidad” (falta de homogeneidad) de intensidad es un problema bien conocido en la segmentación de imágenes, lo que afecta la precisión de los métodos de segmentación basados en la intensidad. En esta tesis, se proponen métodos de contorno activo basado en bordes y regiones para segmentar imágenes inhomogéneas. En primer lugar, se ha propuesto un método de contorno activo basado en fronteras mediante Diferencia de Gaussianas (DoG), que ayuda a segmentar la estructura global de la imagen. En segundo lugar, hemos propuesto un método de contorno activo basado en regiones para corregir y segmentar imágenes inhomogéneas. Se ha utilizado un núcleo de transformación de fase (phase stretch transform - PST) para calcular nuevas intensidades medias y campos de polarización, que se emplean para definir una imagen ajustada de polarización. En tercer lugar, se ha propuesto otro método de contorno activo basado en regiones utilizando un funcional de energía basado en imágenes ajustadas locales y globales. El campo de polarización se aproxima con una distribución Gaussiana y el sesgo de las regiones no homogéneas se corrige dividiendo la imagen original por el campo aproximado de polarización. Finalmente, se ha propuesto un método híbrido de contornos activos multifásico (cuatro fases) para dividir una imagen de RM cerebral en tres regiones distintas: materia blanca (WM), materia gris (GM) y líquido cefalorraquídeo (CSF). En este trabajo, también se ha diseñado un método de post-procesado (corrección de píxeles) para mejorar la precisión de las regiones WM, GM y CSF segmentadas. Se han utilizado resultados experimentales tanto con imágenes sintéticas como con imágenes reales de RM del cerebro para una comparación cuantitativa y cualitativa con métodos de contornos activos del estado del arte para mostrar las ventajas de las técnicas de segmentación propuestas.Intensity inhomogeneity is a well-known problem in image segmentation, which affects the accuracy of intensity-based segmentation methods. In this thesis, edge-based and region-based active contour methods are proposed to segment intensity inhomogeneous images. Firstly, we have proposed an edge-based active contour method based on the Difference of Gaussians (DoG), which helps to segment the global structure of the image. Secondly, we have proposed a region-based active contour method to both correct and segment intensity inhomogeneous images. A phase stretch transform (PST) kernel has been used to compute new intensity means and bias field, which are employed to define a bias fitted image. Thirdly, another region-based active contour method has been proposed using an energy functional based on local and global fitted images. Bias field is approximated with a Gaussian distribution and the bias of intensity inhomogeneous regions is corrected by dividing the original image by the approximated bias field. Finally, a hybrid region-based multiphase (four-phase) active contours method has been proposed to partition a brain MR image into three distinct regions: white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). In this work, a post-processing (pixel correction) method has also been devised to improve the accuracy of the segmented WM, GM and CSF regions. Experimental results with both synthetic and real brain MR images have been used for a quantitative and qualitative comparison with state-of-the-art active contour methods to show the advantages of the proposed segmentation techniques

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    corecore