9,786 research outputs found

    A new twist for the simulation of hybrid systems using the true jump method

    Full text link
    The use of stochastic models, in effect piecewise deterministic Markov processes (PDMP), has become increasingly popular especially for the modeling of chemical reactions and cell biophysics. Yet, exact simulation methods, for the simulation of these models in evolving environments, are limited by the need to find the next jumping time at each recursion of the algorithm. Here, we report on a new general method to find this jumping time for the True Jump Method. It is based on an expression in terms of ordinary differential equations for which efficient numerical methods are available. As such, our new result makes it possible to study numerically stochastic models for which analytical formulas are not available thereby providing a way to approximate the state distribution for example. We conclude that the wide use of event detection schemes for the simulation of PDMPs should be strongly reconsidered. The only relevant remaining question being the efficiency of our method compared to the Fictitious Jump Method, question which is strongly case dependent

    An Exact Auxiliary Variable Gibbs Sampler for a Class of Diffusions

    Full text link
    Stochastic differential equations (SDEs) or diffusions are continuous-valued continuous-time stochastic processes widely used in the applied and mathematical sciences. Simulating paths from these processes is usually an intractable problem, and typically involves time-discretization approximations. We propose an exact Markov chain Monte Carlo sampling algorithm that involves no such time-discretization error. Our sampler is applicable to the problem of prior simulation from an SDE, posterior simulation conditioned on noisy observations, as well as parameter inference given noisy observations. Our work recasts an existing rejection sampling algorithm for a class of diffusions as a latent variable model, and then derives an auxiliary variable Gibbs sampling algorithm that targets the associated joint distribution. At a high level, the resulting algorithm involves two steps: simulating a random grid of times from an inhomogeneous Poisson process, and updating the SDE trajectory conditioned on this grid. Our work allows the vast literature of Monte Carlo sampling algorithms from the Gaussian process literature to be brought to bear to applications involving diffusions. We study our method on synthetic and real datasets, where we demonstrate superior performance over competing methods.Comment: 37 pages, 13 figure

    Fast MCMC sampling for Markov jump processes and extensions

    Full text link
    Markov jump processes (or continuous-time Markov chains) are a simple and important class of continuous-time dynamical systems. In this paper, we tackle the problem of simulating from the posterior distribution over paths in these models, given partial and noisy observations. Our approach is an auxiliary variable Gibbs sampler, and is based on the idea of uniformization. This sets up a Markov chain over paths by alternately sampling a finite set of virtual jump times given the current path and then sampling a new path given the set of extant and virtual jump times using a standard hidden Markov model forward filtering-backward sampling algorithm. Our method is exact and does not involve approximations like time-discretization. We demonstrate how our sampler extends naturally to MJP-based models like Markov-modulated Poisson processes and continuous-time Bayesian networks and show significant computational benefits over state-of-the-art MCMC samplers for these models.Comment: Accepted at the Journal of Machine Learning Research (JMLR

    Stochastic Representations of Ion Channel Kinetics and Exact Stochastic Simulation of Neuronal Dynamics

    Full text link
    In this paper we provide two representations for stochastic ion channel kinetics, and compare the performance of exact simulation with a commonly used numerical approximation strategy. The first representation we present is a random time change representation, popularized by Thomas Kurtz, with the second being analogous to a "Gillespie" representation. Exact stochastic algorithms are provided for the different representations, which are preferable to either (a) fixed time step or (b) piecewise constant propensity algorithms, which still appear in the literature. As examples, we provide versions of the exact algorithms for the Morris-Lecar conductance based model, and detail the error induced, both in a weak and a strong sense, by the use of approximate algorithms on this model. We include ready-to-use implementations of the random time change algorithm in both XPP and Matlab. Finally, through the consideration of parametric sensitivity analysis, we show how the representations presented here are useful in the development of further computational methods. The general representations and simulation strategies provided here are known in other parts of the sciences, but less so in the present setting.Comment: 39 pages, 6 figures, appendix with XPP and Matlab cod

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises

    Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes

    Full text link
    Fast pricing of American-style options has been a difficult problem since it was first introduced to financial markets in 1970s, especially when the underlying stocks' prices follow some jump-diffusion processes. In this paper, we propose a new algorithm to generate tight upper bounds on the Bermudan option price without nested simulation, under the jump-diffusion setting. By exploiting the martingale representation theorem for jump processes on the dual martingale, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal-dual algorithm, therefore significantly improves the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our proposed algorithm
    • …
    corecore