268 research outputs found

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte

    Low-Overhead Coordination in Sub-28 Millimeter-Wave Networks

    Full text link
    In this paper, we present some contributions from our recent investigation. We address the open issue of interference coordination for sub-28 GHz millimeter-wave communication, by proposing fast-converging coordination algorithms, for dense multi-user multi-cell networks. We propose to optimize a lower bound on the network sum-rate, after investigating its tightness. The bound in question results in distributed optimization, requiring local information at each base station and user. We derive the optimal solution to the transmit and receive filter updates, that we dub non-homogeneous waterfilling, and show its convergence to a stationary point of the bound. We also underline a built-in mechanism to turn-off data streams with low-SINR, and allocate power to high-SNR streams. This "stream control" is a at the root of the fast-converging nature of the algorithm. Our numerical result conclude that low-overhead coordination offers large gains, for dense sub-2828 GHz systems. These findings bear direct relevance to the ongoing discussions around 5G New Radio.Comment: 7 pages, double column, IEEE ICC 201

    Inter-micro-operator interference protection in dynamic TDD system

    Get PDF
    Abstract. This thesis considers the problem of weighted sum-rate maximization (WSRM) for a system of micro-operators subject to inter-micro-operator interference constraints with dynamic time division duplexing. The WSRM problem is non-convex and non-deterministic polynomial hard. Furthermore, micro-operators require minimum coordination among themselves making the inter-micro-operator interference management very challenging. In this regard, we propose two decentralized precoder design algorithm based on over-the-air bi-directional signalling strategy. We first propose a precoder design algorithm by considering the equivalent weighted minimum mean-squared error minimization reformulation of the WSRM problem. Later we propose precoder design algorithm by considering the weighted sum mean-squared error reformulation. In both approaches, to reduce the huge signalling requirements in centralized design, we use alternating direction method of multipliers technique, wherein each downlink-operator base station and uplink-operator user determines only the relevant set of transmit precoders by exchanging minimal information among the coordinating base stations and user equipments. To minimize the coordination between the uplink-opeator users, we propose interference budget allocation scheme based on reference signal measurements from downlink-operator users. Numerical simulations are provided to compare the performance of proposed algorithms with and without the inter-micro-operator interference constraints

    AMMSE Optimization for Multiuser MISO Systems with Imperfect CSIT and Perfect CSIR

    Full text link
    In this paper, we consider the design of robust linear precoders for MU-MISO systems where users have perfect Channel State Information (CSI) while the BS has partial CSI. In particular, the BS has access to imperfect estimates of the channel vectors, in addition to the covariance matrices of the estimation error vectors. A closed-form expression for the Average Minimum Mean Square Error (AMMSE) is obtained using the second order Taylor Expansion. This approximation is used to formulate two fairness-based robust design problems: a maximum AMMSE-constrained problem and a power-constrained problem. We propose an algorithm based on convex optimization techniques to address the first problem, while the second problem is tackled by exploiting the close relationship between the two problems, in addition to their monotonic natures.Comment: IEEE Global Communications Conference (GLOBECOM) 201

    Distributed power control over interference channels using ACK/NACK feedback

    Full text link
    In this work, we consider a network composed of several single-antenna transmitter-receiver pairs in which each pair aims at selfishly minimizing the power required to achieve a given signal-to-interference-plus-noise ratio. This is obtained modeling the transmitter-receiver pairs as rational agents that engage in a non-cooperative game. Capitalizing on the well-known results on the existence and structure of the generalized Nash equilibrium (GNE) point of the underlying game, a low complexity, iterative and distributed algorithm is derived to let each terminal reach the GNE using only a limited feedback in the form of link-layer acknowledgement (ACK) or negative acknowledgement (NACK). Numerical results are used to prove that the proposed solution is able to achieve convergence in a scalable and adaptive manner under different operating conditions.Comment: 5 pages, 6 figures, IEEE Global Communications Conference (GLOBECOM), Austin, Texas, Dec. 201

    Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network

    Full text link
    The limited fronthaul capacity imposes a challenge on the uplink of centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of massive multiple-input multiple-output (MIMO) aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs). Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput. However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput. In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise for the massive MIMO aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming for maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by RRU and 128 RAs deployed by BBU, the sum-rate of 10 UDs achieved with the optimal power sharing factors improves 33\% compared with the one attained without optimizing power sharing factors
    • …
    corecore