14,073 research outputs found

    Fast Separable Non-Local Means

    Full text link
    We propose a simple and fast algorithm called PatchLift for computing distances between patches (contiguous block of samples) extracted from a given one-dimensional signal. PatchLift is based on the observation that the patch distances can be efficiently computed from a matrix that is derived from the one-dimensional signal using lifting; importantly, the number of operations required to compute the patch distances using this approach does not scale with the patch length. We next demonstrate how PatchLift can be used for patch-based denoising of images corrupted with Gaussian noise. In particular, we propose a separable formulation of the classical Non-Local Means (NLM) algorithm that can be implemented using PatchLift. We demonstrate that the PatchLift-based implementation of separable NLM is few orders faster than standard NLM, and is competitive with existing fast implementations of NLM. Moreover, its denoising performance is shown to be consistently superior to that of NLM and some of its variants, both in terms of PSNR/SSIM and visual quality

    A recursive scheme for computing autocorrelation functions of decimated complex wavelet subbands

    Get PDF
    This paper deals with the problem of the exact computation of the autocorrelation function of a real or complex discrete wavelet subband of a signal, when the autocorrelation function (or Power Spectral Density, PSD) of the signal in the time domain (or spatial domain) is either known or estimated using a separate technique. The solution to this problem allows us to couple time domain noise estimation techniques to wavelet domain denoising algorithms, which is crucial for the development of blind wavelet-based denoising techniques. Specifically, we investigate the Dual-Tree complex wavelet transform (DT-CWT), which has a good directional selectivity in 2-D and 3-D, is approximately shift-invariant, and yields better denoising results than a discrete wavelet transform (DWT). The proposed scheme gives an analytical relationship between the PSD of the input signal/image and the PSD of each individual real/complex wavelet subband which is very useful for future developments. We also show that a more general technique, that relies on Monte-Carlo simulations, requires a large number of input samples for a reliable estimate, while the proposed technique does not suffer from this problem

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Weighted Mean Curvature

    Full text link
    In image processing tasks, spatial priors are essential for robust computations, regularization, algorithmic design and Bayesian inference. In this paper, we introduce weighted mean curvature (WMC) as a novel image prior and present an efficient computation scheme for its discretization in practical image processing applications. We first demonstrate the favorable properties of WMC, such as sampling invariance, scale invariance, and contrast invariance with Gaussian noise model; and we show the relation of WMC to area regularization. We further propose an efficient computation scheme for discretized WMC, which is demonstrated herein to process over 33.2 giga-pixels/second on GPU. This scheme yields itself to a convolutional neural network representation. Finally, WMC is evaluated on synthetic and real images, showing its superiority quantitatively to total-variation and mean curvature.Comment: 12 page

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin
    • …
    corecore