562 research outputs found

    Sparse nonlinear optimization for signal processing and communications

    Get PDF
    This dissertation proposes three classes of new sparse nonlinear optimization algorithms for network echo cancellation (NEC), 3-D synthetic aperture radar (SAR) image reconstruction, and adaptive turbo equalization in multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications, respectively. For NEC, the proposed two proportionate affine projection sign algorithms (APSAs) utilize the sparse nature of the network impulse response (NIR). Benefiting from the characteristics of lā‚-norm optimization, affine projection, and proportionate matrix, the new algorithms are more robust to impulsive interferences and colored input than the conventional adaptive algorithms. For 3-D SAR image reconstruction, the proposed two compressed sensing (CS) approaches exploit the sparse nature of the SAR holographic image. Combining CS with the range migration algorithms (RMAs), these approaches can decrease the load of data acquisition while recovering satisfactory 3-D SAR image through lā‚-norm optimization. For MIMO UWA communications, a robust iterative channel estimation based minimum mean-square-error (MMSE) turbo equalizer is proposed for large MIMO detection. The MIMO channel estimation is performed jointly with the MMSE equalizer and the maximum a posteriori probability (MAP) decoder. The proposed MIMO detection scheme has been tested by experimental data and proved to be robust against tough MIMO channels. --Abstract, page iv

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    Adaptive filters for sparse system identification

    Get PDF
    Sparse system identification has attracted much attention in the field of adaptive algorithms, and the adaptive filters for sparse system identification are studied. Firstly, a new family of proportionate normalized least mean square (PNLMS) adaptive algorithms that improve the performance of identifying block-sparse systems is proposed. The main proposed algorithm, called block-sparse PNLMS (BS-PNLMS), is based on the optimization of a mixed ā„“2,1 norm of the adaptive filter\u27s coefficients. A block-sparse improved PNLMS (BS-IPNLMS) is also derived for both sparse and dispersive impulse responses. Meanwhile, the proposed block-sparse proportionate idea has been extended to both the proportionate affine projection algorithm (PAPA) and the proportionate affine projection sign algorithm (PAPSA). Secondly, a generalized scheme for a family of proportionate algorithms is also presented based on convex optimization. Then a novel low-complexity reweighted PAPA is derived from this generalized scheme which could achieve both better performance and lower complexity than previous ones. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter\u27s coefficients is combined with row action projections (RAP) to significantly reduce the computational complexity. Finally, two variable step-size zero-point attracting projection (VSS-ZAP) algorithms for sparse system identification are proposed. The proposed VSS-ZAPs are based on the approximations of the difference between the sparseness measure of current filter coefficients and the real channel, which could gain lower steady-state misalignment and also track the change in the sparse system --Abstract, page iv

    A Hybrid Adaptive Compressive Sensing Model for Visual Tracking in Wireless Visual Sensor Networks

    Get PDF
    The employ of Wireless Visual Sensor Networks (WVSNs) has grown enormously in the last few years and have emerged in distinctive applications. WVSNs-based Surveillance applications are one of the important applications that requires high detection reliability and robust tracking, while minimizing the usage of energy to maximize the lifetime of sensor nodes as visual sensor nodes can be left for months without any human interaction. The constraints of WVSNs such as resource constraints due to limited battery power, memory space and communication bandwidth have brought new WVSNs implementation challenges. Hence, the aim of this paper is to investigate the impact of adaptive Compressive Sensing (CS) in designing efficient target detection and tracking techniques, to reduce the size of transmitted data without compromising the tracking performance as well as space and energy constraints. In this paper, a new hybrid adaptive compressive sensing scheme is introduced to dynamically achieve higher compression rates, as different datasets have different sparsity nature that affects the compression. Afterwards, a modified quantized clipped Least Mean square (LMS) adaptive filter is proposed for the tracking model. Experimental results showed that adaptive CS achieved high compression rates reaching 70%, while preserving the detection and tracking accuracy which is measured in terms of mean squared error, peak-signal-to-noise-ratio and tracking trajectory
    • ā€¦
    corecore