601 research outputs found

    Mixed Compressive Sensing Back-Projection for SAR Focusing on Geocoded Grid

    Get PDF
    This article presents a new scheme called 2-D mixed compressive sensing back-projection (CS-BP-2D), for synthetic aperture radar (SAR) imaging on a geocoded grid, in a single measurement vector frame. The back-projection linear operator is derived in matrix form and a patched-based approach is proposed for reducing the dimensions of the dictionary. Spatial compressibility of the radar image is exploited by constructing the sparsity basis using the back-projection focusing framework and fast solving the reconstruction problem through the orthogonal matching pursuit algorithm. An artifact reduction filter inspired by the synthetic point spread function is used in postprocessing. The results are validated for simulated and real-world SAR data. Sentinel-1 C-band raw data in both monostatic and space-borne transmitter/stationary receiver bistatic configurations are tested. We show that CS-BP-2D can focus both monostatic and bistatic SAR images, using fewer measurements than the classical approach, while preserving the amplitude, the phase, and the position of the targets. Furthermore, the SAR image quality is enhanced and also the storage burden is reduced by storing only the recovered complex-valued points and their corresponding locations

    A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.

    Get PDF
    Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method

    Implementation and Performance of Factorized Backprojection on Low-cost Commercial-Off-The-Shelf Hardware

    Get PDF
    Traditional Synthetic Aperture Radar (SAR) systems are large, complex, and expensive platforms that require significant resources to operate. The size and cost of the platforms limits the potential uses of SAR to strategic level intelligence gathering or large budget research efforts. The purpose of this thesis is to implement the factorized backprojection SAR image processing algorithm in the C++ programming language and test the code\u27s performance on a low cost, low size, weight, and power (SWAP) computer: a Raspberry Pi Model B. For a comparison of performance, a baseline implementation of filtered backprojection is adapted to C++ from pre-existing MATLABÂź code. The factorized backprojection algorithm shows a computational improvement factor of 2-3 compared to filtered backprojection. Execution on a single Raspberry Pi is too slow for real-time imaging. However, factorized backprojection is easily parallelized, and we include a discussion of parallel implementation across multiple Pis

    Bistatic synthetic aperture radar imaging using Fournier methods

    Get PDF

    Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    Get PDF
    Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy

    Development of the TanDEM-X Calibration Concept: Analysis of Systematic Errors

    Get PDF
    The TanDEM-X mission, result of the partnership between the German Aerospace Center (DLR) and Astrium GmbH, opens a new era in spaceborne radar remote sensing. The first bistatic satellite synthetic aperture radar mission is formed by flying the TanDEM-X and TerraSAR-X in a closely controlled helix formation. The primary mission goal is the derivation of a high-precision global digital elevation model (DEM) according to High-Resolution Terrain Information (HRTI) level 3 accuracy. The finite precision of the baseline knowledge and uncompensated radar instrument drifts introduce errors that may compromise the height accuracy requirements. By means of a DEM calibration, which uses absolute height references, and the information provided by adjacent interferogram overlaps, these height errors can be minimized. This paper summarizes the exhaustive studies of the nature of the residual-error sources that have been carried out during the development of the DEM calibration concept. Models for these errors are set up and simulations of the resulting DEM height error for different scenarios provide the basis for the development of a successful DEM calibration strategy for the TanDEM-X mission

    Passive Multistatic Radar Imaging using an OFDM based Signal of Opportunity

    Get PDF
    This paper demonstrates a proof of concept in using an OFDM-based signal of opportunity for SAR imaging purposes within a passive, multistatic radar construct. Two signal processing methods have been proposed to create phase history data. The same methods are applied in both a simulated software model and an experimental data collection environment to produce simulated SAR images using the CBP imaging algorithm. The images generated from both the experimental and simulated data were observed to be consistent with each other and with expectations in terms of resolution. Coherent addition of the images results in improved image resolution due to the geometric and frequency diversity of the multistatic scenario compared to the individual bistatic pairs
    • 

    corecore