13,203 research outputs found

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies

    Influence Maximization Meets Efficiency and Effectiveness: A Hop-Based Approach

    Full text link
    Influence Maximization is an extensively-studied problem that targets at selecting a set of initial seed nodes in the Online Social Networks (OSNs) to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale OSNs. Prior Monte-Carlo-simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can easily scale to millions of nodes and billions of edges. Unlike previous heuristics, our proposed hop-based approaches can provide certain theoretical guarantees. Experimental evaluations with real OSN datasets demonstrate the efficiency and effectiveness of our algorithms.Comment: Extended version of the conference paper at ASONAM 2017, 11 page

    Scalable Methods for Adaptively Seeding a Social Network

    Full text link
    In recent years, social networking platforms have developed into extraordinary channels for spreading and consuming information. Along with the rise of such infrastructure, there is continuous progress on techniques for spreading information effectively through influential users. In many applications, one is restricted to select influencers from a set of users who engaged with the topic being promoted, and due to the structure of social networks, these users often rank low in terms of their influence potential. An alternative approach one can consider is an adaptive method which selects users in a manner which targets their influential neighbors. The advantage of such an approach is that it leverages the friendship paradox in social networks: while users are often not influential, they often know someone who is. Despite the various complexities in such optimization problems, we show that scalable adaptive seeding is achievable. In particular, we develop algorithms for linear influence models with provable approximation guarantees that can be gracefully parallelized. To show the effectiveness of our methods we collected data from various verticals social network users follow. For each vertical, we collected data on the users who responded to a certain post as well as their neighbors, and applied our methods on this data. Our experiments show that adaptive seeding is scalable, and importantly, that it obtains dramatic improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201

    Sketch-based Influence Maximization and Computation: Scaling up with Guarantees

    Full text link
    Propagation of contagion through networks is a fundamental process. It is used to model the spread of information, influence, or a viral infection. Diffusion patterns can be specified by a probabilistic model, such as Independent Cascade (IC), or captured by a set of representative traces. Basic computational problems in the study of diffusion are influence queries (determining the potency of a specified seed set of nodes) and Influence Maximization (identifying the most influential seed set of a given size). Answering each influence query involves many edge traversals, and does not scale when there are many queries on very large graphs. The gold standard for Influence Maximization is the greedy algorithm, which iteratively adds to the seed set a node maximizing the marginal gain in influence. Greedy has a guaranteed approximation ratio of at least (1-1/e) and actually produces a sequence of nodes, with each prefix having approximation guarantee with respect to the same-size optimum. Since Greedy does not scale well beyond a few million edges, for larger inputs one must currently use either heuristics or alternative algorithms designed for a pre-specified small seed set size. We develop a novel sketch-based design for influence computation. Our greedy Sketch-based Influence Maximization (SKIM) algorithm scales to graphs with billions of edges, with one to two orders of magnitude speedup over the best greedy methods. It still has a guaranteed approximation ratio, and in practice its quality nearly matches that of exact greedy. We also present influence oracles, which use linear-time preprocessing to generate a small sketch for each node, allowing the influence of any seed set to be quickly answered from the sketches of its nodes.Comment: 10 pages, 5 figures. Appeared at the 23rd Conference on Information and Knowledge Management (CIKM 2014) in Shanghai, Chin
    corecore