4,824 research outputs found

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Zero-Shot Hashing via Transferring Supervised Knowledge

    Full text link
    Hashing has shown its efficiency and effectiveness in facilitating large-scale multimedia applications. Supervised knowledge e.g. semantic labels or pair-wise relationship) associated to data is capable of significantly improving the quality of hash codes and hash functions. However, confronted with the rapid growth of newly-emerging concepts and multimedia data on the Web, existing supervised hashing approaches may easily suffer from the scarcity and validity of supervised information due to the expensive cost of manual labelling. In this paper, we propose a novel hashing scheme, termed \emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories to binary codes with hash functions learned from limited training data of "seen" categories. Specifically, we project independent data labels i.e. 0/1-form label vectors) into semantic embedding space, where semantic relationships among all the labels can be precisely characterized and thus seen supervised knowledge can be transferred to unseen classes. Moreover, in order to cope with the semantic shift problem, we rotate the embedded space to more suitably align the embedded semantics with the low-level visual feature space, thereby alleviating the influence of semantic gap. In the meantime, to exert positive effects on learning high-quality hash functions, we further propose to preserve local structural property and discrete nature in binary codes. Besides, we develop an efficient alternating algorithm to solve the ZSH model. Extensive experiments conducted on various real-life datasets show the superior zero-shot image retrieval performance of ZSH as compared to several state-of-the-art hashing methods.Comment: 11 page

    Hausdorff-Distance Enhanced Matching of Scale Invariant Feature Transform Descriptors in Context of Image Querying

    Get PDF
    Reliable and effective matching of visual descriptors is a key step for many vision applications, e.g. image retrieval. In this paper, we propose to integrate the Hausdorff distance matching together with our pairing algorithm, in order to obtain a robust while computationally efficient process of matching feature descriptors for image-to-image querying in standards datasets. For this purpose, Scale Invariant Feature Transform (SIFT) descriptors have been matched using our presented algorithm, followed by the computation of our related similarity measure. This approach has shown excellent performance in both retrieval accuracy and speed

    Video copy detection by fast sequence matching

    Get PDF
    ABSTRACT Sequence matching techniques are effective for comparing two videos. However, existing approaches suffer from demanding computational costs and thus are not scalable for large-scale applications. In this paper we view video copy detection as a local alignment problem between two frame sequences and propose a two-level filtration approach which achieves significant acceleration to the matching process. First, we propose to use an adaptive vocabulary tree to index all frame descriptors extracted from the video database. In this step, each video is treated as a "bag of frames." Such an indexing structure not only provides a rich vocabulary for representing videos, but also enables efficient computation of a pyramid matching kernel between videos. This vocabulary tree filters those videos that are dissimilar to the query based on their histogram pyramid representations. Second, we propose a fast edit-distance-based sequence matching method that avoids unnecessary comparisons between dissimilar frame pairs. This step reduces the quadratic runtime to a linear time with respect to the lengths of the sequences under comparison. Experiments on the MUSCLE VCD benchmark demonstrate that our approach is effective and efficient. It is 18X faster than the original sequence matching algorithms. This technique can be applied to several other visual retrieval tasks including shape retrieval. We demonstrate that the proposed method can also achieve a significant speedup for the shape retrieval task on the MPEG-7 shape dataset
    • …
    corecore