408 research outputs found

    Fast watermarking of MPEG-1/2 streams using compressed-domain perceptual embedding and a generalized correlator detector

    Get PDF
    A novel technique is proposed for watermarking of MPEG-1 and MPEG-2 compressed video streams. The proposed scheme is applied directly in the domain of MPEG-1 system streams and MPEG-2 program streams (multiplexed streams). Perceptual models are used during the embedding process in order to avoid degradation of the video quality. The watermark is detected without the use of the original video sequence. A modified correlation-based detector is introduced that applies nonlinear preprocessing before correlation. Experimental evaluation demonstrates that the proposed scheme is able to withstand several common attacks. The resulting watermarking system is very fast and therefore suitable for copyright protection of compressed video

    DWT-CompCNN: Deep Image Classification Network for High Throughput JPEG 2000 Compressed Documents

    Full text link
    For any digital application with document images such as retrieval, the classification of document images becomes an essential stage. Conventionally for the purpose, the full versions of the documents, that is the uncompressed document images make the input dataset, which poses a threat due to the big volume required to accommodate the full versions of the documents. Therefore, it would be novel, if the same classification task could be accomplished directly (with some partial decompression) with the compressed representation of documents in order to make the whole process computationally more efficient. In this research work, a novel deep learning model, DWT CompCNN is proposed for classification of documents that are compressed using High Throughput JPEG 2000 (HTJ2K) algorithm. The proposed DWT-CompCNN comprises of five convolutional layers with filter sizes of 16, 32, 64, 128, and 256 consecutively for each increasing layer to improve learning from the wavelet coefficients extracted from the compressed images. Experiments are performed on two benchmark datasets- Tobacco-3482 and RVL-CDIP, which demonstrate that the proposed model is time and space efficient, and also achieves a better classification accuracy in compressed domain.Comment: In Springer Journal - Pattern Analysis and Applications under Minor Revisio

    Image Coding with Face Descriptors Embedding

    Get PDF
    4siContent descriptors, useful for browsing and retrieval tasks, are generally extracted and treated as a separate entity with respect to the nature of the content itself. At the same time, conventional coding processes do not take into account information carried out by content descriptors. Content descriptors are closely related to the content itself, and they potentially can be used to exploit redundancy in entropy coding processes. Embedding content descriptors in the bitstream can reduce content description extraction load, and at the same time, it can reduce the rate associated to the compressed content and its description. In this paper an effective implementation of this approach is presented, where image descriptors are actively used in the coding process for exploiting redundancy. First of all, image areas containing faces are detected and encoded using a scalable method, where the base layer is represented by the corresponding eigenface, and the enhancement layer is formed by the prediction error. The remaining areas are then encoded by using a traditional approach. Simulations show that achievable compression performances are comparable with those provided by conventional, making the proposed approach very convenient for source coding and content description.partially_openpartially_openBoschetti A.; Adami N.; Leonardi R.; Okuda M.Boschetti, Alberto; Adami, Nicola; Leonardi, Riccardo; Okuda, M

    Color image quality measures and retrieval

    Get PDF
    The focus of this dissertation is mainly on color image, especially on the images with lossy compression. Issues related to color quantization, color correction, color image retrieval and color image quality evaluation are addressed. A no-reference color image quality index is proposed. A novel color correction method applied to low bit-rate JPEG image is developed. A novel method for content-based image retrieval based upon combined feature vectors of shape, texture, and color similarities has been suggested. In addition, an image specific color reduction method has been introduced, which allows a 24-bit JPEG image to be shown in the 8-bit color monitor with 256-color display. The reduction in download and decode time mainly comes from the smart encoder incorporating with the proposed color reduction method after color space conversion stage. To summarize, the methods that have been developed can be divided into two categories: one is visual representation, and the other is image quality measure. Three algorithms are designed for visual representation: (1) An image-based visual representation for color correction on low bit-rate JPEG images. Previous studies on color correction are mainly on color image calibration among devices. Little attention was paid to the compressed image whose color distortion is evident in low bit-rate JPEG images. In this dissertation, a lookup table algorithm is designed based on the loss of PSNR in different compression ratio. (2) A feature-based representation for content-based image retrieval. It is a concatenated vector of color, shape, and texture features from region of interest (ROI). (3) An image-specific 256 colors (8 bits) reproduction for color reduction from 16 millions colors (24 bits). By inserting the proposed color reduction method into a JPEG encoder, the image size could be further reduced and the transmission time is also reduced. This smart encoder enables its decoder using less time in decoding. Three algorithms are designed for image quality measure (IQM): (1) A referenced IQM based upon image representation in very low-dimension. Previous studies on IQMs are based on high-dimensional domain including spatial and frequency domains. In this dissertation, a low-dimensional domain IQM based on random projection is designed, with preservation of the IQM accuracy in high-dimensional domain. (2) A no-reference image blurring metric. Based on the edge gradient, the degree of image blur can be measured. (3) A no-reference color IQM based upon colorfulness, contrast and sharpness

    A Joint Learning Approach to Face Detection in Wavelet Compressed Domain

    Get PDF
    Face detection has been an important and active research topic in computer vision and image processing. In recent years, learning-based face detection algorithms have prevailed with successful applications. In this paper, we propose a new face detection algorithm that works directly in wavelet compressed domain. In order to simplify the processes of image decompression and feature extraction, we modify the AdaBoost learning algorithm to select a set of complimentary joint-coefficient classifiers and integrate them to achieve optimal face detection. Since the face detection on the wavelet compression domain is restricted by the limited discrimination power of the designated feature space, the proposed learning mechanism is developed to achieve the best discrimination from the restricted feature space. The major contributions in the proposed AdaBoost face detection learning algorithm contain the feature space warping, joint feature representation, ID3-like plane quantization, and weak probabilistic classifier, which dramatically increase the discrimination power of the face classifier. Experimental results on the CBCL benchmark and the MIT + CMU real image dataset show that the proposed algorithm can detect faces in the wavelet compressed domain accurately and efficiently

    Wavelet packet based approach for image retrieval in compressed domains

    Get PDF
    Author name used in this manuscript: K. O. ChengAuthor name used in this manuscript: N. F. LawAuthor name used in this manuscript: W. C. SiuRefereed conference paper2011-2012 > Academic research: refereed > Refereed conference paperAccepted ManuscriptPublishe

    Content Based Retrieval Using Colour And Texture Of Wavelet Based Compressed Images [TA1637. I67 2008 f rb].

    Get PDF
    Permintaan yang tinggi terhadap penggunaan dapatan semula imej telah menggalakkan pembangun aplikasi multimedia untuk mencari cara untuk mengurus dan mencari imej dengan lebih efisien. The growing demands for image retrieval in multimedia field such as crime prevention, health informatics and biometrics has pushed application developers to search ways to manage and retrieve images more efficiently

    Introducing keytagging, a novel technique for the protection of medical image-based tests

    Get PDF
    This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ¿30 and ¿90. ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers
    corecore