180 research outputs found

    Field D* pathfinding in weighted simplicial complexes

    Get PDF
    Includes abstract.Includes bibliographical references.The development of algorithms to efficiently determine an optimal path through a complex environment is a continuing area of research within Computer Science. When such environments can be represented as a graph, established graph search algorithms, such as Dijkstra’s shortest path and A*, can be used. However, many environments are constructed from a set of regions that do not conform to a discrete graph. The Weighted Region Problem was proposed to address the problem of finding the shortest path through a set of such regions, weighted with values representing the cost of traversing the region. Robust solutions to this problem are computationally expensive since finding shortest paths across a region requires expensive minimisation. Sampling approaches construct graphs by introducing extra points on region edges and connecting them with edges criss-crossing the region. Dijkstra or A* are then applied to compute shortest paths. The connectivity of these graphs is high and such techniques are thus not particularly well suited to environments where the weights and representation frequently change. The Field D* algorithm, by contrast, computes the shortest path across a grid of weighted square cells and has replanning capabilites that cater for environmental changes. However, representing an environment as a weighted grid (an image) is not space-efficient since high resolution is required to produce accurate paths through areas containing features sensitive to noise. In this work, we extend Field D* to weighted simplicial complexes – specifically – triangulations in 2D and tetrahedral meshes in 3D

    Approximate convex decomposition and its applications

    Get PDF
    Geometric computations are essential in many real-world problems. One important issue in geometric computations is that the geometric models in these problems can be so large that computations on them have infeasible storage or computation time requirements. Decomposition is a technique commonly used to partition complex models into simpler components. Whereas decomposition into convex components results in pieces that are easy to process, such decompositions can be costly to construct and can result in representations with an unmanageable number of components. In this work, we have developed an approximate technique, called Approximate Convex Decomposition (ACD), which decomposes a given polygon or polyhedron into "approximately convex" pieces that may provide similar benefits as convex components, while the resulting decomposition is both significantly smaller (typically by orders of magnitude) and can be computed more efficently. Indeed, for many applications, an ACD can represent the important structural features of the model more accurately by providing a mechanism for ignoring less significant features, such as wrinkles and surface texture. Our study of a wide range of applications shows that in addition to providing computational efficiency, ACD also provides natural multi-resolution or hierarchical representations. In this dissertation, we provide some examples of ACD's many potential applications, such as particle simulation, mesh generation, motion planning, and skeleton extraction

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Field D* Pathfinding in Weighted Simplicial Complexes

    Get PDF
    The development of algorithms to efficiently determine an optimal path through a complex environment is a continuing area of research within Computer Science. When such environments can be represented as a graph, established graph search algorithms, such as Dijkstra’s shortest path and A*, can be used. However, many environments are constructed from a set of regions that do not conform to a discrete graph. The Weighted Region Problem was proposed to address the problem of finding the shortest path through a set of such regions, weighted with values representing the cost of traversing the region. Robust solutions to this problem are computationally expensive since finding shortest paths across a region requires expensive minimisation. Sampling approaches construct graphs by introducing extra points on region edges and connecting them with edges criss-crossing the region. Dijkstra or A* are then applied to compute shortest paths. The connectivity of these graphs is high and such techniques are thus not particularly well suited to environments where the weights and representation frequently change. The Field D* algorithm, by contrast, computes the shortest path across a grid of weighted square cells and has replanning capabilites that cater for environmental changes. However, representing an environment as a weighted grid (an image) is not space-efficient since high resolution is required to produce accurate paths through areas containing features sensitive to noise. In this work, we extend Field D* to weighted simplicial complexes – specifically – triangulations in 2D and tetrahedral meshes in 3D. Such representations offer benefits in terms of space over a weighted grid, since fewer triangles can represent polygonal objects with greater accuracy than a large number of grid cells. By exploiting these savings, we show that Triangulated Field D* can produce an equivalent path cost to grid-based Multi-resolution Field D*, using up to an order of magnitude fewer triangles over grid cells and visiting an order of magnitude fewer nodes. Finally, as a practical demonstration of the utility of our formulation, we show how Field D* can be used to approximate a distance field on the nodes of a simplicial complex, and how this distance field can be used to weight the simplicial complex to produce contour-following behaviour by shortest paths computed with Field D*

    Large-scale Geometric Data Decomposition, Processing and Structured Mesh Generation

    Get PDF
    Mesh generation is a fundamental and critical problem in geometric data modeling and processing. In most scientific and engineering tasks that involve numerical computations and simulations on 2D/3D regions or on curved geometric objects, discretizing or approximating the geometric data using a polygonal or polyhedral meshes is always the first step of the procedure. The quality of this tessellation often dictates the subsequent computation accuracy, efficiency, and numerical stability. When compared with unstructured meshes, the structured meshes are favored in many scientific/engineering tasks due to their good properties. However, generating high-quality structured mesh remains challenging, especially for complex or large-scale geometric data. In industrial Computer-aided Design/Engineering (CAD/CAE) pipelines, the geometry processing to create a desirable structural mesh of the complex model is the most costly step. This step is semi-manual, and often takes up to several weeks to finish. Several technical challenges remains unsolved in existing structured mesh generation techniques. This dissertation studies the effective generation of structural mesh on large and complex geometric data. We study a general geometric computation paradigm to solve this problem via model partitioning and divide-and-conquer. To apply effective divide-and-conquer, we study two key technical components: the shape decomposition in the divide stage, and the structured meshing in the conquer stage. We test our algorithm on vairous data set, the results demonstrate the efficiency and effectiveness of our framework. The comparisons also show our algorithm outperforms existing partitioning methods in final meshing quality. We also show our pipeline scales up efficiently on HPC environment

    New Applications of Nearest-Neighbor Chains: Euclidean TSP and Motorcycle Graphs

    Get PDF
    We show new applications of the nearest-neighbor chain algorithm, a technique that originated in agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in O(n sqrt(n)log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in O(n^(4/3+epsilon)) time for any epsilon>0
    • …
    corecore